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ABSTRACT

Studies have shown high performance in the speech emotion recog-
nition (SER) task by fine-tuning a self-supervised speech represen-
tation model. Although this model can provide emotionally discrim-
inative embedding in clean conditions, adapting it to a noisy target
environment is still required when deployed on real-world applica-
tions. For adaptation, it is essential to balance between acquiring
new knowledge from noisy speech and keeping the previous knowl-
edge acquired during the pre-training and fine-tuning of the model.
Therefore, we propose a contrastive teacher-student learning frame-
work to retrain a self-supervised speech representation model for
noisy SER. To keep the knowledge of the original model, we mini-
mize the root mean square error between the clean embeddings from
the original SER model and the noisy embeddings from the retrained
model. To acquire the discriminative knowledge in the target noisy
condition, we also minimize the InfoNCE loss by selecting the cor-
responding clean embedding as a positive sample and other noisy
embeddings with different emotional labels as negative samples. Our
experiment with the clean and noisy version of the MSP-Podcast cor-
pus demonstrates that the contrastive teacher-student learning frame-
work can significantly improve the performance of the model only
trained with the clean speech in the target noisy condition for all the
emotional attributes.

Index Terms— Speech emotion recognition, noisy speech,
transfer learning, contrastive teacher-student learning

1. INTRODUCTION

Self-supervised speech representation models have been success-
fully adopted for speech processing tasks [1–4]. Self-supervised
learning enables the pre-training of the speech representation mod-
els with a large amount of speech data without the need of annotating
each speech recording with labels for the target task. Studies have
used self-supervised learning to improve speech emotion recog-
nition (SER) performance. Keesing et al. [5] showed that using
the Wav2vec2.0 model for acoustic feature extraction led to better
performance than using alternative acoustic features in categorical
emotion recognition tasks. Wagner et al. [6] found that fine-tuning
the wav2vec2-large-robust model [4] with the downstream head can
highly improve the prediction of emotional attributes. Even though
self-supervised speech representation models have shown good SER
performance in clean conditions, those models are highly likely to
generate disrupted embedding in real-world environments due to
non-stationary background noises. Using noisy speech with these

This study is supported by NIH under grant 1R01MH122367-01.

embeddings can provide inaccurate information to the downstream
head, reducing SER performance. There are several approaches
to improve SER performance in noisy conditions, including data
augmentation [7, 8], domain adaptation [9–11], and feature selec-
tion [12, 13]. However, those studies have not investigated their
method with self-supervised speech representation models.

Some studies have improved an automatic speech recogni-
tion (ASR) model by increasing the noise robustness of the self-
supervised speech representation model. Zhu et al. [14] trained a
feature encoder to generate similar embedding with clean and noisy
speech. They applied a contrastive loss to the representation from
transformers while pre-training the model. Wang et al. [15] changed
the pre-training objective of the Wav2Vec2.0 model to predict the
masked noisy embedding with clean speech and the masked clean
embedding with noisy speech. Both studies increased the ASR per-
formance in noisy conditions, indicating that improving the speech
representation model can lead to performance improvements.

This paper proposes to adapt the self-supervised speech repre-
sentation model for SER in the presence of noise by using a con-
trastive teacher-student learning method. Our main goal is to acquire
new knowledge from adverse recording conditions without forget-
ting discriminative information acquired during the pre-training of
the self-supervised speech representation model and fine-tuning of
the SER model using the clean emotional speech data. We fine-
tune the SER model with a clean version of the emotional speech
(teacher). Then, we retrain the model with the training set corrupted
with the target noise (student). To prevent catastrophic forgetting
of the knowledge acquired in the teacher model, we train the student
model to minimize the difference between clean embedding from the
teacher model and noisy embedding from the student model. How-
ever, the model may lose the flexibility to acquire new knowledge
of the target recording conditions. We address this issue by relying
on the infoNCE loss to provide the student model with emotion-
ally discriminative embedding with noisy speech. For each noisy
speech, we make its embedding closer to the one extracted from its
corresponding clean speech, while making it distant from the ones
extracted from other noisy speech samples with different emotions.

In our experiments with the clean and noisy version of the
MSP-Podcast corpus [16], our contrastive teacher-student learning
improves the model only trained with the clean speech by 42.2%
(arousal), 32.7% (dominance), and 48.5% (valence) in the 0db con-
dition. To the best of our knowledge, this is the first study to improve
the self-supervised speech representation model for the SER task.
Instead of changing the pre-training objective, this is the first study
to modify the fine-tuning strategy with noisy speech, which does not
require a large amount of additional data for pre-training.IC
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Fig. 1. Diagram of the contrastive teacher-student learning strategy
to adapt a self-supervised speech representation model for SER in
noisy conditions. The model uses the main task loss LCCC , transfer
learning loss LTL, and the contrastive loss LCL.

2. PROPOSED METHOD
We propose a contrastive teacher-student learning framework to pre-
vent catastrophic forgetting of the speech representation model dur-
ing its adaptation to noisy conditions. Figure 1 illustrates the di-
agram of our proposed contrastive teacher-student learning frame-
work. We consider the SER model only trained with clean speech
as the teacher model (T), and the SER model that we want to re-
train with noisy speech as the student model (S). To get noisy train-
ing samples for the student model, we contaminate the clean speech
samples used to fine-tune the original SER model with the target
noise sounds. With these noisy samples, we update the learned self-
supervised representation model and the downstream head to predict
the emotional label of its corresponding clean speech. We apply av-
erage pooling on the frame-level output of the self-supervised speech
representation model, S(xnoisy), to feed it to the downstream head.

We use three loss functions to train the student model: one to
predict emotional labels from noisy speech, another to keep the
knowledge of the teacher model, and a third to acquire emotion-
ally discriminative information from noisy speech. The first loss
is LCCC , which corresponds to the primary loss associated with
the SER task. This paper focuses on the prediction of the emo-
tional attributes of arousal, dominance, and valence. Therefore, we
train the model to maximize the concordance correlation coefficient
(CCC) between the prediction from noisy speech and the ground
truth labels, LCCC , illustrated in Equation 1,

LCCC = (1− LAro) + (1− LDom) + (1− LV al) (1)

where LAro, LDom, and LV al correspond to the CCC between the
prediction and the ground truth for arousal, dominance, and valence,
respectively. There are benefits reported in previous studies on train-
ing a model to jointly predict multiple emotional attributes [17–19].

The second loss is LTL, which aims to create embeddings in
noisy conditions that are similar to the embeddings from clean con-
ditions. We aim to keep the knowledge acquired from the pre-trained
self-supervised model and the fine-tuned model using the clean ver-
sion of the emotional speech corpus. We decrease the distance be-
tween the student model and teacher model embeddings. When we
train the student model, we additionally extract the embeddings from
the teacher model with the corresponding clean speech (T (xclean)).
We train the student model to minimize the root mean square er-
ror (RMSE) between the clean teacher and noisy student embed-

dings. We do not update the teacher model so that the student model
can learn with a consistent representation. Equation 2 illustrates our
transfer loss LTL,

LTL =
1

N
ΣN

i=0{
√

(T (xi
clean)− S(xi

noisy))
2} (2)

where N denotes the number of samples in each mini-batch, and
xi
clean and xi

noisy denote the i-th clean and noisy speech samples,
respectively.

The third loss is LCL, which is a contrastive loss to make the
student model more discriminative in noisy conditions. We use the
InfoNCE loss [20] so that the student model acquires contrastive
emotional knowledge with clean and noisy speech. The idea is to
decrease the distance in the embeddings of the speech representa-
tion for samples that have similar values for all the attributes, and
increase it for samples that have different emotional labels, regard-
less of the environmental conditions. We set the corresponding clean
speech as a positive sample and the other noisy speech with different
ground truth within a mini-batch as negative samples for each noisy
speech. As explained in Section 3.1, the emotional attributes are an-
notated with a seven-point Likert scale. We define negative samples
if the difference in the emotional attributes between the positive sam-
ple and the other samples in the mini-batch is larger than 0.5. With
the positive and negative samples for each noisy speech, we extract
the teacher embedding from the clean positive sample and the stu-
dent embeddings from the noisy negative samples. By using these
embeddings, we train the student model to minimize the contrastive
loss, LCL, which is illustrated in Equation 3,

LCL = − 1

N
ΣN

i=0log
exp(cos(T (xi

clean), S(x
i
noisy))/τ)

Σk
j=0exp(cos(S(x

j
noisy), S(x

i
noisy))/τ)

(3)

where k denotes the number of negative samples for the i-th noisy
speech and τ denotes the temperature coefficient to smooth the co-
sine similarity, which is set to 0.1 in this study.

Equation 4 illustrates the final objective of the proposed student
model in our contrastive teacher-student learning, L.

L = LCCC + λTLLTL + λCLLCL (4)
where λTL and λCL are the coefficients to weigh the transfer loss
and the contrastive loss. These hyper-parameters balance the objec-
tive function between keeping the original knowledge and acquiring
new discriminative knowledge.

3. EXPERIMENT SETTINGS
3.1. The MSP-Podcast Corpus

We use the MSP-Podcast corpus to train and evaluate the proposed
model [16]. The corpus contains natural and diverse emotional
speech samples collected from various audio recordings. All the
audios are selected to have duration between 2.75s and 11s, such
that they do not include background music or overlapped speech.
The data collection protocol also considers samples with predicted
signal-to-noise ratio (SNR) above 20dB. This study focuses on pre-
dicting the emotional attributes of arousal, dominance, and valence.
The corpus is annotated with emotional labels using a crowdsourc-
ing protocol inspired by the study of Burmania et al. [21]. The
perceptual score for each emotional attribute was annotated by at
least five raters using a seven-point Likert scale with values between
1 and 7. The ground truth values are estimated by averaging the
scores provided by the raters to each speaking turn. We use release
1.8 of the corpus, which has 15,326 samples in the test set, 7,800
samples in the development set, and 44,879 samples in the train
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set. We use the train set to fine-tune the SER model. We use sam-
ples from the development set to select the best model during the
fine-tuning process.

The study also uses the noisy version of the MSP-Podcast cor-
pus, which was introduced in Leem et al. [9]. We simultaneously
played speech and noise sounds with two portable speakers, record-
ing those mixed sounds on a smartphone in a single-walled sound
booth. We use noise sounds collected from traditional radio shows
without copyright containing human voices, background music, and
various types of sound effects. We collect three noisy conditions
at different levels of SNR by calibrating the distance between two
speakers and the smartphone with the estimated SNR of each condi-
tion. According to their estimated SNR, we name these three con-
ditions as 10dB, 5dB, and 0dB, respectively. For the emotional la-
bel, we directly transfer the emotional labels of the clean version of
the MSP-Podcast corpus to the corresponding noisy speech samples.
This study uses the 15,326 samples from the test set for each noisy
condition to test the model in noisy conditions.

Since it is impractical to directly get a noisy parallel speech set
in the target condition, we do not use the train set in the noisy version
of the MSP-Podcast corpus to retrain the model for the target condi-
tion. Instead, we contaminate the clean train set with 30 minutes of
noise sound samples. We use only 30 minutes, since collecting noisy
recordings with a longer duration from the target environment is less
practical for real applications. Those noise samples are collected us-
ing the same setting used in the recording of the noisy version of the
MSP-Podcast corpus by recording just noise sounds without playing
speech samples from the corpus.

3.2. Fine-Tuning Self-Supervised Model with Clean Speech
We use the Wav2vec2.0 architecture [1] that has shown good perfor-
mances for SER tasks [6,22]. Among the variants of the Wav2vec2.0
model, we use wav2vec2-large-robust, pre-trained with databases
from multiple speech domains [4]. Wagner et al. [6] reported the best
SER performance with this model. We prune the top 12 transformer
layers from the model, since this approach preserves the recognition
performance, while reducing the number of parameters [6]. We ag-
gregate the outputs of the Wav2vec2.0 model across frames by using
average pooling per utterance. This vector is processed by the down-
stream head, implemented with two hidden layers, where each layer
has 1,024 nodes. We use the rectified linear unit (ReLU) activation
function, and a linear output layer with three nodes for the down-
stream head. We apply dropout, with a rate set to p = 0.5, and layer
normalization [23] for all the hidden layers of the downstream head
to regularize the model. During fine-tuning, we use the Adam opti-
mizer [24] with a learning rate set to 0.00001. We use 32 utterances
per mini-batch and update the model for 20 epochs, after which we
select the model with the best development set performance.

3.3. Contrastive Teacher-Student Implementation
The contrastive teacher-student model is implemented by adapting
the fine-tuned SER model to the target noisy condition. We copy
and retrain the fine-tuned SER model to use it as a student model.
We set the 0dB condition in the noisy version of the MSP-Podcast
corpus as our target condition. We use the parallel version of the
train set contaminated with the target noise sound at 0dB SNR level.
By randomly extracting segments from the 30 minutes of the target
noise, we change the noise sounds to contaminate each clean speech
for each epoch, preventing it from being overfitted to a fixed noisy
speech set. We also contaminate the clean speech in the development
set using the same approach.

With these noisy speech samples, we update the speech repre-
sentation model and the downstream head with the objective of our

contrastive teacher-student learning, L. We set λTL and λCL to 100
and 10. These conditions showed the best performance in the noisy
development set. We use the same optimizer and hyper-parameters
as the ones used for fine-tuning the model with clean speech. Once
the adaptation is completed, we use the student model to evaluate
the SER performance in the matched SNR condition (0dB), as well
as in the mismatched SNR condition (10dB, 5dB).

3.4. Baseline models
Original: This model fine-tunes the model with clean emotional
speech, with no adaptation to the noisy condition.
Retrain head (RH): This baseline retrains the model without the pro-
posed transfer learning and contrastive losses (e.g., LTL, and LCL).
We only update the downstream head with the noisy speech, freezing
the parameters of the fine-tuned speech representation model. Al-
though this model can keep the original representation learned from
clean data while pre-training and fine-tuning the model, it restricts
its capability to acquire new knowledge from the noisy condition.
Retrain entire model (RM): This baseline updates the speech repre-
sentation model and the downstream head with noisy speech. This
method acquires new knowledge from noisy speech. However, there
is no constraint for preventing the catastrophic forgetting of the
knowledge previously learned by the SER model.
Retrain with transfer learning loss (RM +TL): This baseline trains
the model without using the InfoNCE loss, LCL, to assess the ef-
fectiveness of including the proposed contrastive learning strategy.
Retrain with contrastive loss (RM +CL): This baseline train the
model without using the transfer learning loss, LTL.

The complete contrastive teacher-student learning strategy is re-
ferred to as RM+TL+CL.

4. RESULTS
4.1. Emotion Recognition Performance

We compare the SER performance of each training strategy in clean
and noisy conditions. For each training method, we select three mod-
els that showed the best performances in the development set, with-
out selecting models in consecutive epochs during training. We also
split the test set into 30 groups for each condition. This process re-
sults in 90 values (3 models × 30 test sets), over which we conduct
statistical analysis of the results. We conduct a one-tailed Welch’s
t-test between the original and the other models to check if the train-
ing strategy helps to improve the performance of the original SER
model in noisy conditions. We assert significance at p-value ≤ 0.05.

Table 1 shows the average CCC across the 90 values per model
and SNR condition. As the SNR level is reduced in the test set, the
performance of the original SER model drops in all the attributes.
Therefore, adapting the SER model to the noisy condition is essen-
tial, even when using a self-supervised speech representation model.
When comparing RH and RM with the original model, we find
that neither model consistently improves the performance of each
attribute. While RH increases the arousal and dominance perfor-
mance, it lowers the performance of valence. RM improves valence
performance, but it does not significantly improve the predictions
for arousal and dominance. These results illustrate the limitations of
freezing the original speech representation for noisy SER tasks and
show that retraining the model with noisy speech without applying
any constraints is not an appropriate method for noisy SER tasks.

Compared with the original model, our contrastive teacher-
student learning strategy shows significant improvements for all the
attributes. When the model is trained with either the transfer learn-
ing loss or the contrastive loss, we observe significant improvements
for arousal and dominance over the model that is just retrained with
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Table 1. Average CCC for the proposed contrastive teacher-student learning model (RM+TL+CL) and the baselines, including the model
implemented without the contrastive loss (RM+TL), or without the transfer learning loss (RM+CL). The results are reported for arousal
(Aro.), dominance (Dom.), and valence (Val.) across noise conditions. We denote with ∗, †, and ⋆ when a model shows significantly better
performance than the original, RH, and RM models, respectively. We highlight in bold the best performance per condition.

Matched condition Mismatched condition Clean condition
0dB 5dB 10dB Clean

Aro. Dom. Val. Aro. Dom. Val. Aro. Dom. Val. Aro. Dom. Val.
original 0.244 0.226 0.227 0.379 0.335 0.308 0.438 0.374 0.351 0.586 0.506 0.473
RH 0.323∗ 0.278∗ 0.164 0.443∗ 0.390∗ 0.236 0.494 0.424⋆ 0.278 0.549 0.433 0.418
RM 0.272 0.215 0.330∗ 0.412 0.328 0.418∗ 0.459 0.350 0.454∗ 0.546 0.429 0.498
RM+TL 0.345∗⋆ 0.289∗⋆ 0.337∗† 0.474∗⋆ 0.403∗⋆ 0.416∗† 0.513∗ 0.430∗⋆ 0.459∗† 0.565 0.472 0.505†
RM+CL 0.339∗⋆ 0.296∗⋆ 0.314∗† 0.451∗⋆ 0.391∗⋆ 0.399∗† 0.487∗ 0.402∗⋆ 0.433∗† 0.574 0.485 0.495†

RM+TL+CL 0.347∗⋆ 0.300∗⋆ 0.335∗† 0.477∗⋆ 0.410∗⋆ 0.417∗† 0.523∗⋆ 0.435∗⋆ 0.452∗† 0.566 0.472 0.492†

Table 2. Analysis of clean and noisy embeddings created by the
proposed and baselines models. The table shows the RMSE and
cosine similarity and InfoNCE loss across different noise conditions.

0dB 5dB 10dB

RMSE 0.00

0.02

0.04

0.06

0.08

0.00

0.02

0.04

0.06

0.08

0.00

0.02

0.04

0.06

0.08

Cosine sim. 0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

InfoNCE 0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

noisy speech. The models RM+TL and RM+CL also show signif-
icant improvements for valence over the RH model. Table 1 shows
that combining these two losses yields the best performance for
arousal and dominance, even in mismatched noise conditions (i.e.,
using an SNR level that is different from 0dB SNR, which is the
noise level used to adapt the model). Compared with the original
model, our contrastive teacher-student learning strategy shows sig-
nificant improvement for all the attributes. In the matched condition,
our contrastive teacher-student learning approach yields a 42.2%
gain for arousal, 32.7% gain for dominance, and 48.5% gain for
valence. These results clearly show that our transfer learning loss
and contrastive loss can prevent catastrophic forgetting of learned
information and acquire new knowledge from noisy speech.

4.2. Embedding Comparison
In section 4.1, we demonstrated that our contrastive teacher-student
learning strategy improves SER performance for all the attributes.
This section analyzes the embedding differences and contrastive
losses between clean and noisy speech to validate that the robust
representation causes such improvements. We use clean and noisy
speech samples in the development set of the clean and noisy version
of the MSP-Podcast corpus. We compare the RMSE and cosine sim-
ilarity between the embedding extracted from the clean speech with
the original model and the embedding from the noisy speech with
the retrained model to assess if the learned representation can keep
the knowledge acquired by the original model. We also calculate
the infoNCE loss to assess if the learned representation can provide
emotionally discriminative information regardless of the recording
conditions. Similar to the approach used to estimate the contrastive

loss described in Section 2, we select 32 clean and noisy speech
pairs to define positive and negative samples. For each noisy speech,
we select the corresponding clean speech as a positive sample. The
negative samples are the other noisy speech samples with different
emotional labels in the set. We repeat this process multiple times
until we use all the samples in the development set.

Table 2 illustrates the result of our analysis. When comparing
the difference between the clean and noisy embeddings, applying the
transfer loss reduces the distance in the embeddings (i.e., RM+TL,
RM+TL+CL). Those two models show less differences between
clean and noisy representations than the original model and the re-
trained model without using the transfer loss (i.e., RM, RM+CL).
It shows the same trends even in the mismatched SNR condition
(10dB, 5dB), indicating that making the noisy embedding closer to
the clean embedding leads to SER performance improvement for all
the attributes. The analysis of the InfoNCE loss shows that using the
contrastive loss (i.e., RM+CL, RM+TL+CL) leads to lower losses
than the other models. In the 0dB condition, the RM+CL model
shows 26.0% lower infoNCE loss than the original model, and
10.1% lower infoNCE loss than the RM model. By combining the
transfer loss with the contrastive loss (i.e., RM+TL+CL), it further
decreases the loss in the mismatched SNR conditions (10dB, 5dB).
Only applying the transfer loss (i.e., RM+TL) does not lead to a clear
difference in the infoNCE loss, when compared with the RM model.
Generating emotionally contrastive and noise-robust representation
further improves the predictions for arousal and dominance.

5. CONCLUSIONS
This paper proposed a contrastive teacher-student learning strategy
to adapt the SER model with a self-supervised speech representation
model to the noisy condition. Our method retrains the SER model
with noisy speech using a transfer learning loss and a contrastive loss
that aim to keep the knowledge learned with the pre-trained model
and the fine-tuning process, while still acquiring new contrastive
knowledge using the noisy speech in the target condition. Our exper-
iments with the clean and noisy version of the MSP-Podcast corpus
showed that contrastive teacher-student learning improves the per-
formance of a fine-tuned SER model for arousal, dominance, and
valence in noisy conditions. The improvements were observed even
in mismatched SNR conditions (5dB, 10dB) that are different from
the target noise condition used to adapt the model (0dB). The con-
trastive teacher-student learning strategy can generate a robust em-
bedding for noisy speech, leading to performance improvement.

Our method still relies on a parallel corpus with noisy speech,
which requires a large number of recordings with the target noise
to adapt the model. We plan to investigate alternative implementa-
tions that use non-parallel unlabeled noisy speech samples to further
improve our contrastive teacher-student learning framework.
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