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Abstract

Decision makers face a nontrivial problem when evaluating
how much time to invest in an uncertain future prospect. Un-
conditional persistence is not always advantageous; rather, dif-
ferent levels of persistence are favored in environments with
different temporal statistics. Previous studies using foraging-
like decision-making tasks have found that people can rapidly
recalibrate their persistence behavior—becoming either more
or less willing to tolerate delay—after a short period of direct
experience with the temporal statistics of a new environment.
Furthermore, substantial individual variation is apparent both
in baseline levels of persistence and in the flexibility of re-
calibration across environments. However, it is unknown to
what degree such variation reflects trait-like individual differ-
ences in contrast to session-specific measurement noise. Here
we investigated the test-retest reliability of individual variation
in behavioral persistence in a computerized decision-making
task. We conducted an online experiment in which partici-
pants (n=141 after exclusions) performed the task on two occa-
sions separated by a three-week interval. We evaluated the test-
retest reliability of several behavior-derived indices, including:
a descriptive estimate of overall willingness to wait, a contrast
measure reflecting flexibility of recalibration across environ-
ments, and individual-level parameter estimates derived from
a reinforcement learning model of adaptive persistence. The
results showed strong evidence for stable, trait-like individual
variation in multiple aspects of persistence-related decision-
making behavior. Our findings establish a foundation for fu-
ture investigations of associations between task-derived pa-
rameters of decision behavior and other cognitive and moti-
vational traits.
Keywords: decision making; intertemporal choice; foraging;
test-retest reliability; computational modeling; reinforcement
learning

Introduction
Although the ability to delay gratification is essential for at-
taining beneficial long-run outcomes, not all outcomes in the
real world are worth waiting for indefinitely. A general prob-
lem faced by both humans and foraging animals in delay-of-
gratification scenarios is to regulate persistence in a context-
appropriate manner (McNamara, 1982; McGuire & Kable,
2013; Fawcett, McNamara, & Houston, 2012). The cognitive
processes that govern the contextually adaptive regulation of
persistence—and the ways in which such cognitive processes
might differ across individuals—are not yet fully understood.

One behavioral paradigm for studying the experience-
driven calibration of persistence is the willingness-to-wait
task (McGuire & Kable, 2015, 2012; Lempert, McGuire,
Hazeltine, Phelps, & Kable, 2018). In this task, participants

continuously decide whether (and for how long) to continue
waiting for delayed and temporally uncertain rewards. The
alternative to waiting is to disengage from the current reward
opportunity and move on to a new one. Akin to foraging
paradigms (McNamara, 1982; Constantino & Daw, 2015),
participants’ goal in the task is to maximize the rate of re-
ward accrual over the course of a fixed time period by choos-
ing between exploiting and abandoning individually encoun-
tered reward prospects. The probability distributions govern-
ing delay durations are manipulated across environments so
that either higher or lower levels of persistence lead to more
advantageous outcomes. In high persistence (HP) environ-
ments, the passage of time supports an inference that the re-
ward’s expected arrival time is drawing nearer, whereas in
limited-persistence (LP) environments, time passage beyond
a certain point signals that the expected remaining delay is
growing longer. Using this paradigm, researchers have con-
sistently observed an overall trend toward adaptive calibration
(greater willingness to wait in HP environments than in LP
environments) accompanied by an appreciable level of varia-
tion across individuals.

Laboratory measures of intertemporal decision making
can, in principle, offer insight about sources of variation in
motivational traits such as impulsivity that are relevant to
mental health and well being. For example, estimates of tem-
poral discount rates show strong test-retest reliability (Kirby
& Kirby, 2009) and are correlated with college GPA (Kirby,
Winston, Santiesteban, & Kirby, 2005), the incidence of sub-
stance use disorder (Kirby, Petry, & Bickel, 1999), and prob-
lematic drinking behavior (Vuchinich & Simpson, 1998). A
laboratory measure of delay of gratification in children (the
“marshmallow test”) has been found to correlate with intel-
ligence, social skills, cognitive control, academic achieve-
ment and other competencies years later (Mischel, Shoda,
& Rodriguez, 1989; Casey et al., 2011; Mischel, Shoda, &
Peake, 1988). However, task-derived measures generally ex-
hibit lower reliability compared to self-report measures, rais-
ing doubts about their general utility for investigating indi-
vidual differences (Hedge, Powell, & Sumner, 2017; Enkavi
et al., 2019).

The present work assessed the test-retest reliability of indi-
vidual differences in behavior in the willingness-to-wait task.
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Such differences can be operationalized in terms of several
different behavior-derived indices. One possibility is to cal-
culate a descriptive statistic for the average amount of time
an individual was willing to wait, conditional on the reward
not having been delivered. A second possibility is to cal-
culate the difference between waiting times in HP and LP
environments, with a larger difference presumably indicat-
ing greater adaptive flexibility. This type of contrast mea-
sure can more specifically isolate a putative cognitive factor
(e.g., flexibility); however, contrast measures are believed to
be less reliable than raw task measures because subtraction
of random variables mathematically increases their variance
(Caruso, 2004).

A third possibility is to fit a behavior-generating compu-
tational model to the task data and capture individual differ-
ences in model parameter estimates. Individually fit model
parameters are believed to provide deeper insights into cog-
nitive and biological processes than conventional task mea-
sures (Maia & Frank, 2011; Patzelt, Hartley, & Gershman,
2018; Gläscher, Adolphs, & Tranel, 2019; Frank, Moustafa,
Haughey, Curran, & Hutchison, 2007). However, previous re-
sults on the reliability of such estimates are mixed. One study
reported certain parameters of diffusion models were as sta-
ble as raw task measures (e.g., drift rate, threshold and nonde-
cision time). However, another study found that parameters
of reinforcement learning (RL) models showed either weak
or no correlations over repeated administration (Weidinger,
Gradassi, Molleman, & van den Bos, 2019).

We conducted a large-sample test-retest study online to
assess the reliability of three types of measures in the
willingness-to-wait task: raw task measures, contrast mea-
sures, and model-derived parameters.

Methods
Participants
The test-retest study was conducted on Amazon Mechanical
Turk. Participants completed a 20-minute willingness-to-wait
task in two sessions spaced approximately three weeks apart.
197 participants participated in the first session. 171 partici-
pants whose data met quality criteria were invited to partici-
pate in the second session (see Data exclusion). 141 partici-
pants (37.5% female, age: mean = 42.2, median = 40.0, range
= 23–74) satisfactorily completed both sessions.

Task
For this online study, we used an active version of the
willingness-to-wait task to reduce the risk of attentional
lapses. Unlike earlier versions of the task (McGuire & Kable,
2015, 2012), participants had to make repeated key-presses
throughout the delay interval in order to continue waiting.

Figure 1a shows a schematic of the sequence of task events.
At the onset of a trial, a token worth 0¢ appeared in the center
of the screen, with the white text ‘start pressing now’ above.
Once the participant started to make key presses, the white
text disappeared and the token would mature to a value of 2¢

after a random delay. Participants could either make continu-
ous key presses (≥ 2 strokes per second) to keep waiting for
the token or stop pressing anytime to sell the token. Once the
token was sold, the word ‘SOLD’ appeared in red over the
token for 1 s. After a 0.5-s blank screen, a new trial started.
The interface also displayed the accumulated earnings and
the time remaining in the current block at the bottom of the
screen.

In each session, the participant experienced a 10-min block
in the LP environment followed by a 10-min block in the
HP environment. As shown in Figure 1b, in the HP environ-
ment delays were sampled equally from eight possible values
evenly spaced from 1.5 to 12 s, whereas in the LP environ-
ment delays were equally sampled from eight values logarith-
mically spaced up to 24 s. In the HP environment the optimal
strategy was always to wait, whereas in the LP environment
the optimal strategy was to wait up to 2.3 s (see Normative
analysis for details).

A fixed ordering of the two timing condition conditions
(LP followed by HP in each session) was used to avoid intro-
ducing extraneous variance across participants and sessions.
This design feature reflects that the study’s main goals fo-
cused on individual differences rather than on main effects
of condition (which have been demonstrated previously us-
ing between-subject designs or counterbalanced condition or-
ders).

Different environments were represented by different to-
ken colors. The color mapping differed across sessions and
was counterbalanced across participants. For example, if the
LP environment was represented by purple tokens in the first
session, it would be presented by pink tokens in the second
session, making the environment visually novel. This design
feature was intended to mitigate practice effects.

In each session, participants completed four practice trials
before the actual task. In the first two trials, they were re-
quired to wait until the token matured. In the next two trials,
they were required to sell the token before it matured. No
environment-specific information was provided in the prac-
tice.

Data exclusion
Participants were excluded if they failed to complete the en-
tire session, if they sold matured tokens too slowly (median
RT ≥ 1.2 s), or if they achieved ≤ 450 s of active on-task time
in a block (because of cumulative delay in starting new trials
or selling matured tokens).

Since participants showed a tendency to transiently de-
crease their persistence level under time pressure near the end
of a block, we excluded responses in the last 24 s of each
block in all of our analyses except for generating the entire
learning course in Figure 2a.

Behavioral analysis
To characterize behavior over time, we calculated a local esti-
mate of each participant’s willingness to wait (WTW) every 2
s throughout the experiment. During quit trials, this estimate
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Figure 1: Sequence of events in the willingness-to-wait task
(a) and delay durations that defined the high-persistence and
limited-persistence environments (b).

was set equal to the observed waiting time. During other tri-
als, the estimate was set equal to the longest time waited since
the last quit trial. The estimate was capped at 12 s to make
the two environments comparable.

To summarize each individual’s overall level of behavioral
persistence, we constructed a Kaplan-Meier survival curve
for each participant in each block. The analysis was restricted
to the 0 to 12 s range for which we had observations in both
environments. Rewarded trials were treated as censored ob-
servations of the participant’s waiting time. The area under
the survival curve (AUC) captured the average amount of time
a participant was willing to wait within the first 12 s, condi-
tional on the reward not having been delivered. The same
analysis was also performed on the first and second half of
each block separately to summarize behavior at a finer scale.

To assess the flexibility with which participants recali-
brated persistence across environments, we calculated ∆AUC
by subtracting AUC in the LP environment from that in the
HP environment. A larger value of ∆AUC was interpreted as
reflecting greater flexibility.

Normative analysis
We determined the reward-maximizing behavioral strategy in
each environment by calculating the average rate of return
for various waiting policies. Define the length of delay for
a token to mature as a random variable, λ. For a policy of
quitting at time T, define the average rate of return as ρT, and
the probability that the token matures before T as PT = P(λ ≤
T). Define WT as the expected delay if the reward is received
before T, WT = E[λ | λ ≤ T]. The expected rate of return, in
¢/s, is

ρT =
2 ·PT

PTWT +(1−PT)T+1.5

The numerator is a trial’s expected gain in cents and the de-
nominator is a trial’s expected duration in seconds (including
the 1.5-s ITI). The optimal giving-up time is simply the value
of T that maximizes ρT, denoted as T∗. The corresponding
expected rate of return is denoted as ρ∗

T.
In our task, the optimal giving-up time was 12 s in the HP

environment (ρ∗
T = 0.242 ¢/s), and 2.312 s in the LP environ-

ment (ρ∗
T = 0.313 ¢/s)

Modeling analysis
Details of the RL model for the willingness-to-wait task can
be found elsewhere (work in preparation). Briefly, the model
conceptualizes behavior in the task as emerging from a se-
ries of wait-or-quit choices over the course of the delay. Each
time step in a trial is a distinct temporal state. Decision mak-
ers assess the value of continuing to wait in comparison to
quitting for each specific temporal state and make a choice
accordingly.

The RL model has five parameters, each of which reflects
a specific computational factor. The parameters can take
individual-specific values to capture variation in behavior:
learning rate α, valence-dependent bias ν, inverse tempera-
ture of the decision function τ, temporal discounting γ, and
prior beliefs about the value of waiting η.

Model parameters were estimated using Bayesian methods
implemented in Stan (Carpenter et al., 2017), with uniform
priors: α ∼ unif(0,0.3), ν ∼ unif(0,5), τ ∼ unif(0.1,22),
γ ∼ unif(0.7,1), η ∼ unif(0,6.5). We fit each model for each
participant and each session with 4 chains, 4000 samples per
chain. The first 2000 samples in each chain were discarded
as burn-in. The mean of the posterior distribution for each
parameter was used as a point estimate.

We compared the full version of the model (described
above) with a reduced version that lacked the valence-
dependent bias parameter ν and therefore had equal sensi-
tivity to rewarding and nonrewarding outcomes. We chose
widely applicable information criterion (WAIC) as our model
fit criterion, a quantity that rewards goodness of fit while pe-
nalizing model complexity. To determine which model pro-
vided the better fit at the group level, we tabulated the number
of participants best fit by each form of the model.

Reliability analysis
We used Spearman’s ρ as our measure of test-retest reliability.
95% confidence intervals for Spearman’s ρ were constructed
using bootstrap methods (1000 samples). The magnitudes of
two Spearman’s ρ coefficients were compared using permu-
tation tests (1000 permutations, Omelka & Pauly, 2012).

Results
Behavioral results
Participants were able to calibrate their persistence level in a
context-dependent manner. Figure 2a shows the local WTW
estimate as a function of task time. In both sessions, par-
ticipants reduced their persistence level in the LP environ-
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ment and increased their persistence level in the HP environ-
ment. We then used survival analysis to estimate each par-
ticipant’s overall probability of ‘surviving’ various lengths
of time without quitting. Figure 2b shows averaged per-
participant empirical survival curves in the two environments.
The area under the curve (AUC) estimates how much of the
first 12 s a participant was willing to wait on average. In
both sessions, AUC values were higher in the HP environ-
ment than in the LP environment (Session 1: HP, median =
7.52 s, IQR = 5.41-9.21 s; LP, median = 5.88 s, IQR = 4.73-
7.73 s, signed-rank p < 0.001. Session 2: HP, median = 6.86
s, IQR = 5.36-9.08 s; LP, median = 5.26, IQR = 4.04-6.53 s,
signed-rank p < 0.001).

There was a concern that behavior might systematically
differ across sessions due to experience with the task, which
might have unpredictable effects on estimates of test-retest
reliability. To access the severity of this issue, we first com-
pared participants’ local behavior across sessions (Figure 2a).
We found the local WTW estimate at the beginning of the task
was significantly lower in Session 2 compared to Session 1.
This could have occurred because participants updated their
prior belief about the general times scale of rewards in the
task. However, no systematic divergence was observed within
other time windows, either in terms of persistence level or
the calibration trajectory. We then calculated AUC values for
the first and second halves of each block and compared them
across sessions. Consistent with the local comparison results,
significant differences in AUC were only detected in the first
half of the LP block (Session 1: median = 6.66 s, IQR =
5.29-8.00 s; Session 2: median = 5.31 s, IQR = 4.24-7.07;
signed-rank p < 0.001).

Modeling results
Participants were excluded in modeling analyses if the
MCMC chains fit to their data did not converge. For the full
model, seven participants in Session 1 and three participants
in Session 2 were excluded. For the reduced model, seven
participants in Session 1 and eight participants in Session 2
were excluded.

Consistent with previous findings (work in preparation),
the full model with two separate learning rates for reward-
ing and nonrewarding outcomes fit the data better than the
reduced model. It had lower WAIC and better fit the majority
of participants in both sessions (Table 1). Table 2 summarizes
the individually fit parameters for the full model.

To validate the parameter estimates of the full model, we
simulated 10 data sets with each participant’s estimated pa-
rameter values and compared the AUC value calculated from
the model-generated data (averaged across 10 data sets) with
the observed AUC for that participant. As shown in Figure 3,
with individually fit parameters, the full RL model was highly
accurate in reproducing the data.

Reliability of descriptive task measures
AUC was the main descriptive task measure in the
willingness-to-wait task. We first assessed the reliability of
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Figure 2: Behavioral results. (a) Mean local WTW estimate
averaged across participants (with standard error of the mean;
s.e.m.), sampled at intervals of 2 s. Red dots at the top indi-
cate time points at which the local WTW estimate was sig-
nificantly different between Sessions 1 and 2 (signed-rank
p < 0.05 after false discovery rate correction). (b) Mean sur-
vival curves averaged across participants, with s.e.m., sam-
pled at intervals of 0.1 s.
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Figure 3: Observed AUC compared with AUC generated by
the full RL model. Each data point is the AUC value of one
participant in one environment. The diagonal line is plotted
for reference.

Table 1: Model comparison results

Reduced model Full model
WAIC

(mean ± s.e.m.)
Session 1
Session 2

393.24 ± 11.60
374.07 ± 10.95

382.93 ± 10.82
367.89 ± 10.68

Best explained
Session 1
Session 2

36
48

112
83
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Table 2: Parameter estimates of the full RL model. Data are
reported as median (IQR).

Free parameter Session 1 Session 2
Learning rate α 0.010 (0.004-0.023) 0.005 (0.002-0.017)
Valence-dependent bias ν 0.490 (0.160-1.020) 0.712 (0.345-1.524)
Inverse temperature τ 5.903 (4.051-8.069) 7.508 (5.179-11.083)
Temporal discounting γ 0.858 (0.827-0.897) 0.831 (0.797-0.866)
Prior belief parameter η 0.896 (0.660-1.249) 0.639 (0.448-0.910)

the AUC calculated based on data from each block (HP and
LP). As shown in Figure 4, the reliability of AUC was 0.570
(95% CI [0.423, 0.696]) in the LP environment and 0.737
(95% CI [0.659, 0.806]) in HP environment.

We then assessed the reliability of the AUC calculated
based on data from each half block (LP-1st, LP-2nd, HP-1st,
and HP-2nd). The goal was to examine whether the relia-
bility of AUC was time-dependent. AUC in the first half of
the LP block was the least reliable (LP-1st = 0.420, 95% CI
[0.251, 0.546], LP-2nd = 0.619, 95% CI [0.481, 0.732], HP-
1st = 0.683, 95% CI [0.578, 0.766], HP-2nd = 0.683, 95% CI
[0.573, 0.769]). This was probably because this time period
was most affected by practice effects as discussed above.

Reliability of contrast measures
∆AUC was calculated by subtracting AUC in the LP environ-
ment from that in the HP environment. The resulting score
can be interpreted as reflecting an individual’s flexibility in
calibrating persistence across environments. Compared to
AUC, ∆AUC had lower reliability (Spearman’s ρ = 0.492,
95% CI [0.351, 0.604], Figure 5).

Reliability of RL model parameters
Figure 6 compares the parameter estimates of the full RL
model across sessions. All model parameters were signif-
icantly correlated across sessions. However, their reliability
was relatively low compared to AUC and ∆AUC (Spearman’s
ρ: α = 0.344, 95% CI [0.192, 0.481]; ν = 0.275, 95% CI
[0.12, 0.422]; τ = 0.353, 95% CI [0.196, 0.487]; γ = 0.191,
95% CI [0.03, 0.346]; η = 0.316, 95% CI [0.145, 0.464]).

Comparing the full model and the reduced model (Figure
7), we observed a nonsignificant tendency for the full model
to yield a more reliable estimate of the learning rate α (Spear-
man’s ρ: full model = 0.344, 95% CI [0.192, 0.481]; reduced
model = 0.196, 95% CI [0.006, 0.351]). Such an effect could
potentially have occurred because the full model was able
to account for learning asymmetry for rewarding and non-
rewarding outcomes with the additional parameter, valence-
dependent bias ν. The reliability of other model parameters
was roughly the same.

Conclusion
Maladaptive persistence behavior is closely associated with
impulsivity, a transdiagnostic feature of multiple mental
health conditions. Persistence calibration is potentially a

Figure 4: Across-session correlations of AUC estimates.
Spearman’s correlation statistics are annotated.
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Figure 5: Across-session correlation of ∆AUC. For illus-
trative purposes, outlier data points (> 1.5 IQR, n = 3) are
not shown in the scatterplot. Spearman’s correlation statistics
were calculated using all data points.
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mated parameters for the full RL model. For illustrative pur-
poses, three parameters with heavy-tailed distributions were
log transformed and outlier data points (> 1.5 IQR) are not
shown in scatterplots. Spearman’s correlation statistics were
calculated using all data points.
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Full model Reduced model

Figure 7: Violin plots show bootstrapped Spearman’s ρ esti-
mates for model parameters of the full model and the reduced
model.

promising factor to test for associations with clinical symp-
tom dimensions. However, an important prerequisite for
such investigations is to assess the reliability with which
individual-level parameters of behavioral persistence can be
measured in laboratory settings. Previous studies have de-
veloped a behavioral task that examines context-dependent
persistence under temporal uncertainty, but the test-retest re-
liability of task behavior has yet to be assessed.

In this study, an online test-retest data set was collected
using the willingness-to-wait task, with a final sample size
of 141 and an inter-test interval of 3 weeks. We assessed
the test-retest reliability of three types of measures: raw task
measures (AUC), contrast measures (∆AUC), and RL model
parameters.

All task measures were significantly correlated across ses-
sions and captured substantial individual differences. The
raw task measure, AUC, reached an average Spearman’s ρ of
0.654 across environments, which was comparable to mea-
sures obtained using standard self-regulation tasks (Enkavi
et al., 2019). This provided preliminary evidence that per-
sistence calibration is a stable trait and qualifies for further
investigation as a predictor of real-life outcomes.

In considering the relative reliability of different types of
task-derived indices, our study found qualitatively similar re-
sults to earlier studies (Enkavi et al., 2019; Weidinger et al.,
2019). Raw task measures, AUC measured in the two envi-
ronments, were the most reliable, with Spearman’s ρ = 0.570
in the LP environment and Spearman’s ρ = 0.737 in the HP

environment. In comparison, the contrast measure, ∆AUC,
was less reliable (Spearman’s ρ = 0.492). The RL model
parameters were significantly correlated across sessions but
were the least reliable (average Spearman’s ρ = 0.296).

Test-retest reliability was also influenced by other method-
ological factors. For example, we found the better-fit variant
of the RL model showed a tendency toward yielding more
reliable learning rate estimates. This underscores the point
that good alignment of the model and the paradigm is crucial
for obtaining reliable parameter estimates. To improve the
reliability of model parameters, it will be important to exam-
ine the effects of methodological factors (e.g., choice of com-
putational models, fitting procedures, and data prepossessing
methods) more comprehensively in future work.
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