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Abstract

When speech emotion recognition (SER) is applied in an actual
application, the system should be able to cope with audio ac-
quired in a noisy, unconstrained environment. Most studies on
noise-robust SER require a parallel dataset with emotion labels,
which is impractical to collect, or use speech with artificially
added noise, which does not resemble practical conditions. This
study builds upon the ladder network formulation, which can
effectively compensate the environmental differences between
a clean speech corpus and real-life recordings. This study pro-
poses a decoupled ladder network, which increases the robust-
ness of the SER system against the influences of non-stationary
background noise by decoupling the last hidden layer embed-
ding into emotion and reconstruction embeddings. This novel
implementation allows the emotion embedding to focus exclu-
sively on building a discriminative representation, without wor-
rying about the reconstruction task. We introduce a noisy ver-
sion of the MSP-Podcast database, which contains audio seg-
ments collected with a smartphone that simultaneously records
sentences from the corpus and non-stationary noise at different
signal-to-noise ratios (SNRs). We test the effectiveness of our
proposed model with this corpus, showing that the decoupled
ladder network can increase the performance of the regular lad-
der network when dealing with noisy recordings.

Index Terms: speech emotion recognition, domain adaptation

1. Introduction

Speech emotion recognition (SER) plays a crucial role in im-
proving human-machine interaction. Recently, its performance
has been highly improved with the advance of deep neural net-
work (DNN) [1-5] and larger emotional speech datasets [6-9].
Despite the improvements, SER tasks still show poor perfor-
mance in actual recording conditions, which are often collected
with smartphones and wearable devices in unconstrained envi-
ronments with non-stationary noises.

Several techniques may improve SER performance in noisy
conditions by selecting features that are robust to background
noise [10-12], transforming the noisy features into clean fea-
tures [13—15], or augmenting the training data by contaminat-
ing clean speech with various types of noises [16, 17]. Another
method is to apply domain adaptation techniques to the SER
model to compensate for the environmental differences between
clean speech corpora and the target recording conditions. Some
studies have focused on minimizing the difference between the
training and target data by using a small amount of labeled tar-
get data [18-22]. However, applying those methods to real-
life applications requires knowledge of the target environment
or emotional labels of audios collected from the target domain.
Such limitations make it impractical in real-life applications.

Semi-supervised domain adaptation is a practical approach
to apply to real-life applications, since it can leverage the au-
dios from the target environment without requiring emotional
labels. Previous studies [23-25] have demonstrated that ladder
networks can be successfully applied in cross-corpus SER by
only using unlabeled data from the target corpus. Ladder net-
works use an autoencoder as its backbone, adding lateral con-
nections between intermediate layer representations in the en-
coder and decoder. Ladder networks can be trained to predict
the emotional label of the input audio, while simultaneously re-
ducing the train/test mismatch by containing the information of
the target corpus during the reconstruction of the hidden layer
representations, which can be achieved with unlabeled data.

Building upon those studies, we propose an improvement
on the ladder network architecture for SER in noisy, uncon-
strained environments. In these conditions, ladder networks
need to deal with the complex background noise in unlabeled
audios, which disrupts emotion predictions. The key idea in our
approach is that emotional features derived from noise signals
should be decoupled from the features needed for the recon-
struction task in the ladder network. Exploring this idea, we
propose the decoupled ladder network (DLN), which can im-
prove the feature representation to be more discriminative for
the SER task. Our proposed approach separates the last hid-
den layer into two different embeddings; emotion embedding
and reconstruction embedding. After the separation, the emo-
tion embedding can exclusively focus on the SER task, without
worrying about the reconstruction task in the ladder network.
Under this implementation, the proposed DLN can eliminate
any redundant information that is needed for the reconstruction
of the embeddings, but disrupts the emotional predictions.

To evaluate our model, we introduce the noisy version of
MSP-Podcast corpus, which simulates recordings from real-
life environments. Instead of using manually synthesized noisy
speech, we record audio from the corpus in a noisy environment
using a smartphone. We played audio from the MSP-Podcast
corpus and non-stationary background noise at different signal-
to-noise ratios (SNRs). The smartphone collects both audios,
creating recordings that simulate real-life environments. Our
experiments with the noisy version of the MSP-Podcast corpus
demonstrate that the DLN can enhance the prediction of arousal
by 11.4%, 8.4%, 10.2%, and dominance by 17.1%, 13.2%,
7.0%, in the 10dB, 5dB, 0dB conditions, respectively.

2. Related work
2.1. Ladder Network

Ladder networks were first proposed as a semi-supervised fea-
ture representation learning framework [26]. The approach re-
lies on a stacked denoising autoencoder [27] and denoising
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Figure 1: Model architecture comparison between the ladder network (left) and the decoupled ladder network (DLN) (right). Gray

areas indicate the features used in the reconstruction task.

source separation (DSS) [28]. A ladder network consists of
an encoder, decoder, and lateral connection between those two
modules. The encoder is trained to predict the label with its
noisy representation, and the decoder is trained to reconstruct
the clean representation of each hidden layer in the encoder.
This model has been further improved by applying batch nor-
malization in each layer [29], and by investigating different
types of denoising functions in the decoder [30].

2.2. Use of Ladder Network in SER

Ladder networks have been successfully applied in SER tasks.
Huang et al. [23] combined ladder network and support vector
regression (SVR) to predict categorical emotions. Parthasarathy
and Busso [24] used ladder networks, as shown on the left side
of Figure 1, to predict the level of arousal, dominance and va-
lence. In their later study [25], they also showed that the ladder
network can minimize the domain differences by using unla-
beled speech data from the target corpus.

3. Decoupled Ladder Network

By using the ladder network, SER systems can be trained with
a large amount of labeled emotional speech data and unlabeled
audio samples from its target domain. However, in real-life ap-
plications, such unlabeled audio samples are likely to contain
a variety of non-stationary background noise, which makes it
difficult to reduce train and test mismatches. Even though the
ladder network can achieve more relevant features for the pre-
diction by using its lateral connection, due to the high com-
plexity of real-life noise, it needs more constraints to minimize
the influences of redundant information induced by noise in its
emotion prediction. To explore this idea, we propose the de-
coupled ladder network (DLN) which separates the last hidden
layer representation into an embedding needed for the predic-
tion task and an embedding needed for the reconstruction task.

Figure 1 compares the architecture of the DLN with the ar-
chitecture of the ladder network. In the ladder network, the
output of the last hidden layer in the encoder, RED s di-
rectly fed into the output layer. However, in the DLN, ZL(L b
is separated into two embeddings: emotion embedding, h., and
reconstruction embedding, h,. We arbitrarily split the embed-
ding into two by assigning the first half of the nodes to Z. and
the second half of the nodes to Z,.. Finally, bias correction and
activation functions are applied to each representation, making
he and h,, respectively. Those two embeddings play different
roles in the model. To predict the emotional labels, the output
layer only uses the emotion embedding, which is trained exclu-
sively to create a discriminative representation. To reconstruct
each clean hidden layer representation of the encoder, only the
reconstruction embedding is fed into the highest layer of the de-
coder. Under this training method, the emotion embedding does

Table 1: Settings for each recording condition and their esti-
mated SNR level. (A) denotes the distance between the smart-
phone and the speech source. (B) denotes the distance between
the smartphone and the noise source.

Recording (A) (inch) (B) (inch) Estimated

condition SNR (dB)
10dB 5 35 11.06

5dB 10 30 4.34

0dB 15 25 0.15

not need to contain information needed for the reconstruction,
making it easier to extract emotion-related information. Equa-
tion 1 shows the total cost function of the DLN Cprn, which
adds the prediction loss, Cp, and the summation of the recon-
struction loss in layer [, C'., across all layers.

L—2
Cprn = Cyly, hE) + 7N x Cr(zg, =) (1
1=0

AN ) CF TN E Y 2,

where Eém denotes the last output of the DLN, ! denotes a hy-
perparameter that weighs C’, and 2},31}\, is a reconstructed repre-
sentation in the layer /, normalized by the mean and the standard
deviation of the clean representation z(!). Note that the decoder

does not reconstruct zZ. and ééL) to make them only related to
the primary prediction task.

During training, we alternately present a mini-batch of la-
beled data and a mini-batch of unlabeled data, as described by
Parthasarathy and Busso [25]. We train the model to maximize
the concordance correlation coefficient (CCC) for the primary
task by minimizing C, = 1 — CCC. For C, we use the mean
square error (MSE) between the reconstructed representation,
24 v, and the clean representation, z'. When the input is a mini-
batch of unlabeled data, the model is only trained to minimize
the reconstruction loss. Otherwise, the model is trained to min-
imize the prediction and reconstruction losses.

4. Experiment settings

4.1. Noisy version of MSP-Podcast

This study uses the MSP-Podcast corpus (version 1.8) as the
labeled speech corpus [7]. This corpus contains clean sponta-
neous emotional speech segments extracted from various pod-
cast recordings. The recordings are selected when the predicted
SNR is above 20dB, which are then formatted at a sampled rate
of 16kHz. We use the retrieval approach proposed in Mari-
ooryad et al. [31] to annotate only speech segments that we
expect to be emotional as indicated by SER predictions. The
annotation is conducted with a modified version of the crowd-
sourcing protocol proposed by Burmania et al. [32], where
we track the performance of the workers in real time. This



study uses emotional attributes for valence (negative versus pos-
itive), arousal (calm versus active) and dominance (weak versus
strong) collected with a Likert-scale from 1 to 7. Version 1.8
includes 44,879 samples for the train set, 7,800 for the develop-
ment set and 15,326 for the test set.

A contribution of this study is a noisy version of the MSP-
Podcast corpus to simulate real-life recording conditions. Al-
though most of the studies on noise-robust SER have tested their
method on artificially-generated noisy speech data by adding
noise to clean speech signals, this approach is not enough to
resemble the audio recorded from real-life environment. The
noise is often fixed and repeated multiple times to match the
duration of the clean audio, which is not realistic. Therefore,
we directly use a smartphone that simultaneously recorded the
clean speech and the noise signal. We use a 13ft x 13ft Amer-
ican Speech-Language-Hearing Association (ASHA) certified
single-walled sound booth, which is shown in Figure 2. For
the noise source, we used radio shows without copyright, which
contains a variety of noise sounds, including human voice, mu-
sical sound, and sound effects. We changed the distance be-
tween the smartphone and the speech source (denoted as A in
Table 1), and the distance between the smartphone and the noise
source (denoted as B in Table 1) to change the SNR. For calibra-
tion, we recorded 1-minute recordings for the speech and noise.
Table 1 shows the distances for A and B, and the estimated SNR
for three recording conditions. We refer to these recording con-
ditions as 10dB, 5dB, and 0dB according to the estimated SNR.
Since the speech segments from the MSP-Podcast corpus are
used in the recordings, we can transfer the same emotional la-
bels for the noisy version of the database.

In our implementation, we train the models with clean data
from the MSP-Podcast corpus (train set), evaluating the perfor-
mance on its development set. We evaluate the results on the test
set of the noisy version of the corpus. We create this train-test
mismatch to evaluate the generalization of our approach to new
conditions. The DLN requires unlabeled data from the target
domain (e.g., noisy condition). We create this set by collecting
noisy recordings of 43,361 speech segments that have not been
annotated yet, matching the number of samples in the train set
(10dB, 5dB, and 0dB). We refer to this set as the unlabeled set.

4.2. Acoustic Features

For the acoustic feature, we used the 6,373 dimension feature
set introduced in the Interspeech 2013 Computational Paralin-
guistics Challenge (ComParE) [33]. All the features are nor-
malized with the mean and standard deviation obtained from
the training set. We calculate the mean and variance by consid-
ering data within the 0.5 to 99.5 percentiles of the training set to
reduce influence of outliers. We clip the value of each feature if
they exceed 110 after the normalization.

4.3. Settings for the Decoupled Ladder Network

Our proposed DLN has two hidden layers, where each layer has
256 nodes. We split the last hidden layer into a 128 dimen-
sion emotion embedding and a 128 dimension reconstruction
embedding. The output layer has a single cell to predict the
score of the emotional attribute. We used the rectified linear
unit (ReLU) activation function in the hidden layer, and a linear
activation function for the output layer. To regularize the model
without disrupting the reconstruction task, we put 10% dropout
between the input layer and the first hidden layer. We used a
single layer augmented multilayer perceptron (AMLP) with 4
cells as a denoising function in the decoder [30].

To test the effectiveness of only using the reconstruction
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Figure 2: Settings for collec;n;g the noisy version of MSP-
Podcast in the sound booth

embedding in the reconstruction task, we compare the DLN
with the model that has the same architecture of DLN but uses
both emotion and reconstruction embeddings in the reconstruc-
tion task, which we denoted DLN+h.. Unlike the DLN, the
model is also trained to reconstruct the clean representation in
the last hidden layer and the output layer. To reconstruct the
output layer, the last output of the encoder is fed into the high-
est layer of the decoder. To reconstruct the last hidden layer, the
decoder receives the concatenation of the emotion embedding
and reconstruction embedding from the lateral connection.

During training, we used the labeled set from the MSP-
Podcast corpus, and the unlabeled set from the noisy version
of the MSP-Podcast. We match the recording condition for the
unlabeled training data and test data. For example, when test-
ing the model in the10dB recording condition, we used the un-
labeled training data from the 10dB recording condition. To
select the model, we checked the performance on the develop-
ment set of the MSP-Podcast corpus, and select the model that
showed the best performance within 100 epochs. We use this
model to report the performance in the noisy test set. To train
the parameters, we use the Adam optimizer with a learning rate
equal to 0.00005, and with a mini-batch of 256 sentences. We
set the coefficient of the reconstruction loss in the ladder net-
work to X! = 1.0 for all the layers.

4.4. Baseline models

We compare the proposed DLN with a dense network, and the
regular ladder network (LN). Both models have the same num-
ber of hidden layers and cells as the DLN. We further regularize
the dense network by adding a 50% dropout between the in-
put layer and the first hidden layer and between the first hidden
layer and the second hidden layer. All the hyperparameters for
the training of baseline models are identical to those used in
the DLN training. We train the dense network only with the
labeled set of the MSP-Podcast corpus, since it is a supervised
approach. The LN includes the reconstruction of the last hidden
layer and the output layer in its training, as the DLN+h. model,
but without splitting the last layer into two embeddings.

5. Results

For the evaluation, we ran 20 experiments for each model with
different initial weights, reporting the average scores. We con-
duct a two-tailed Welch'’s t-test between the dense network and
the other models and between the LN and DLN to assess the
effectiveness of our proposed semi-supervised training scheme
in noisy conditions. We assert significance at p-value < 0.05.

5.1. Emotional Prediction Performance

Table 2 shows the average CCC value over the 20 trials of
the baseline models and our proposed DLN. When testing
the model in noisy recording conditions, all the models show
lower prediction performance than the performance in the clean



Table 2: CCC values for each recording condition. Our baseline models, dense network and ladder network, are denoted as Dense
and LN, respectively. DLN denotes a decoupled ladder network, and DLN + he denotes the model that has same architecture of
the DLN, but use both embeddings in its reconstruction task. We highlight in bold the best performance per condition. The symbols |
and * indicate that a given model shows significant improvement compared to the Dense and LN models, respectively.

Arousal Valence Dominance
clean  10db 5db 0db | clean  10db  5db 0db | clean 10db 5db 0db

Dense 0.631 0248 0.229 0.192 0296 0.I51  0.120 0.104 | 0.562  0.253 0.252 0215

LN 0.627 04387 04247 03647 | 0280 0146 0129 0.111 | 0545 03817 03857 0.3397

DLN 0.625 04887+ 04607+ 04027+ | 0283  0.160* 0.126 0114 | 0.556* 0.4507* 04367+  0.3977*

DLN +h. | 0611 04321 04287 03727 | 0273 0146 0124 0094 | 0541 o401t 0407" 03547
recording condition. Also, as the level of noise increases, the o7
performance decreases. These results confirm the detrimental zj X
effects that background noise has on emotion predictions. The Uf):‘ I I 5 .
ladder network showed much higher performance than dense Sos I I I I I I I
network when testing in the noisy condition. The difference is 02 L1 1 L1111
much clearer in the prediction of arousal and dominance. It in- 0.1 | I I i 111
dicates that this semi-supervised learning approach can adapt a o U oo Tt Beos Tt Moson oo Moo Moso Booo Moo B B
SER model to unconstrained noisy recording environments. cleen 10db 5db  Odb |clean 10db 5db  Odb | clean 10db 5db  0db

The performance is further improved when using the DLN Arowst Testing condi:/igl:ml\:’cdiction type pomiance

model that only uses the reconstruction embedding for the re- Sheshr
construction task. In the prediction of arousal, DLN increases (a)
the performance of the ladder network by 11.4%, 8.4%, and 85614
10.2% for the 10dB, 5dB, and 0dB conditions, respectively. In 23
the prediction of dominance, DLN increases the performance £ 2 i
by 17.1%, 13.2%, and 7.0% for the 10dB, 5dB, and 0dB con- §L5
ditions, respectively. The model cannot achieve significant im- é | - |
provements for valence in the noisier conditions, leaving it as =05 1 _I :I | 4 I |
our future work to improve the decoupled ladder network for . 1
this attribute. Including the emotion embedding in the recon- clean 10db Sdb  0db clean 10db Sdb  Odb clean 10db Sdb  Odb
struction task (i.e., DLN + h. condition) does not show signif- Arousal ) Valence Dominance
. . . . . . . Testing condition / Prediction type
icant improvement, indicating that separating the emotion em- ® Reconstruction from h, = Reconstruction from hy

bedding from the reconstruction task leads to the observed per-
formance improvements.

5.2. Analysis on separating the embedding

The goal of DLN is to decouple the last hidden layer in two
parts, such that one is needed for the prediction and one is
needed for the reconstruction. To check if our proposed method
achieves this goal, we conduct two analyses on each embedding.

The first analysis evaluates if the reconstruction embedding
has information for the emotion prediction task. We check the
performance of using the reconstruction embedding as the in-
put of the output layer, instead of using the emotion embed-
ding. Figure 3a compares the prediction performance when us-
ing the reconstruction embedding for the SER task with the per-
formance of the proposed DLN. The results demonstrate that
the CCC values are nearly O when using the reconstruction em-
bedding for the emotional prediction. This result indicates that
the output layer cannot extract emotional information from the
reconstruction embedding.

The second analysis evaluates if the emotion embedding
has information needed to reconstruct the input feature. In this
analysis, we put the emotion embedding into the decoder, in-
stead of feeding the reconstruction embedding. Figure 3b shows
the MSE of the input reconstruction when using the emotion
embedding, compared to the ones using the reconstruction em-
bedding. Our results show that the reconstruction losses using
the emotion embedding are much higher than the losses using
the reconstruction embedding. For valence, the difference in
the reconstruction losses between embeddings is smaller than
the differences for arousal and dominance. This result suggests
that more improvements for valence can be achieved by impos-
ing more strict constraints to decouple the two embeddings.

(b)
Figure 3: Analyses on emotion and reconstruction embeddings.
(a) Comparison of the absolute CCC values for using emotion
embedding and reconstruction embedding in the DLN. (b) Mean
square error of input reconstruction for using emotion embed-
ding and reconstruction embedding in the DLN.

6. Conclusions

This paper proposed the decoupled ladder network (DLN) to
improve the robustness of a SER system in noisy environments.
The approach decouples the emotion embedding from the re-
construction embedding in the last layer, so it can exclusively
focus on improving the SER performance. To simulate more re-
alistic recording conditions, we collected a noisy version of the
MSP-Podcast corpus using a smartphone that simultaneously
recorded the clean speech and non-stationary radio noise. Our
experiments showed that the DLN can improve the performance
of the ladder network in unconstrained recording conditions by
decoupling the representation into emotion and reconstruction
embeddings. We found that the DLN can separate the informa-
tion for the prediction and reconstruction tasks. As future work,
we will investigate stronger constraints on the DLN that can fur-
ther reduce the dependencies between the emotional and recon-
struction embeddings, which we expect to improve the model.
We also plan to test our model using multi-task learning (MTL)
framework, which has showed better performance than single-
task learning for dense network [34], and ladder network [25].
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