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Abstract

Transfer learning is a promising approach to increase perfor-
mance for many speech-based systems, including voice activ-
ity detection (VAD). Domain adaptation, a subfield of trans-
fer learning, often improves model conditioning in the pres-
ence of a mismatch between train-test conditions. This study
proposes a formulation for VAD based on the teacher-student
training, where the teacher model, trained with clean data, trans-
fers knowledge to the student model trained with a noisy, paired
version of the corpus resembling the test conditions. The mod-
els leverage temporal information using recurrent neural net-
works (RNN), implemented with either bidirectional long short
term memory (BLSTM) or the modern, continuous-state Hop-
field network. We provide evidence that in-domain noise emula-
tion for domain adaptation is viable under unconstrained audio
channel conditions for VAD “in the wild.” Our application do-
main is in healthcare, where multimodal sensors, including mi-
crophones, from portable devices are used to automatically pre-
dict social isolation in patients affected by schizophrenia. We
empirically show positive results for domain emulation when
the training conditions are similar to the target domain. We also
show that the Hopfield network outperforms our best BLSTM
for VAD on real-world benchmarks.

Index Terms: Voice Activity Detection, Speech Activity,
Transfer learning, Domain Adaptation, Hopfield Network

1. Introduction

Voice activity detection (VAD), the binary classification task of
distinguishing voiced segments in an audio stream, is an in-
creasingly important building block for other speech process-
ing tasks such as automatic speech recognition (ASR), speaker
separation, and speech emotion recognition (SER). While cur-
rent methods for VAD have shown to perform well within con-
strained recording environments, VAD under non-ideal condi-
tions is still an open problem.

In unconstrained recording environments, VAD must re-
main robust to challenging, non-stationary noise at a low signal-
to-noise-ratio (SNR). These conditions arise naturally in real
applications, including our target domain. We are exploring the
use of speech technologies as tools for healthcare, where mo-
bile devices [1] are used to gather acoustic or environmental
information to inform the well-being of a patient over a pe-
riod of time [2]. Traditionally, VAD has relied on statistical
relations between audio features by employing mathematical
methods such as principal component analysis (PCA) [3], and
linear prediction (LP) analysis [4], often employing dynamic
approaches [5]. However, current methods for this task are
now largely based on deep learning [6—10], where deep neu-

ral networks (DNNs) have demonstrated unprecedented levels
of success on speech processing problems due to the ability to
extract valuable, non-linear relationships between data points.
This feature has led to increased robustness to noise and overall
performance of VAD systems.

This paper proposes a supervised approach based on the
teacher-student formulation to transfer knowledge by reducing
the mismatch between source and target domains. Our approach
emulates noise conditions in the target domain by creating a
parallel corpus using additive noise. A teacher model, trained
for the ideal source domain, is used to transfer knowledge to a
student model designed to work on the target domain. During
training, the student model leverages the teacher’s representa-
tion, reducing the mismatch between train and test conditions.
This formulation can be implemented with a variety of mod-
ern DNN architectures. We exploit temporal information by
using bidirectional long short term memory (BLSTM) and the
novel, continuous-state Hopfield (CS-Hopfield) network [11].
The proposed approach can increase the generalization of the
student model, improving robustness.

The experimental evaluation shows that the proposed ap-
proach of incorporating paired data with similar noise condi-
tions to the target domain during training can be useful to im-
prove the performance of VAD systems. When the target do-
main and the emulating data are sufficiently similar, positive
transfer occurs, improving the student performance. The ap-
proach is not effective when noise conditions are mismatched
in the target domain. We show recurrent architectures such
as BLSTM and CS-Hopfield networks lead to improved per-
formance when a longer temporal context is available to the
models. The proposed approach achieves a Fl-score of 72%
on our challenging, uncontrolled target domain, which is 7%
better than our baseline system. The main contributions of our
study are:

* We propose a model agnostic, feature agnostic, teacher-
student domain adaptation framework for training a VAD
model. This approach reduces the mismatch between source
and target domain, boosting the performance of existing deep
learning based VAD systems in the presence of noise.

* For the first time, the teacher-student domain embedding
minimization is introduced in a VAD task, showing its com-
plimentary benefits in a real healthcare application.

2. Related Works

2.1. Target Domain

This study is part of our multidisciplinary collaboration to in-
vestigate social isolation in patients affected by schizophrenia
spectrum disorders (SZ) using portable devices [2]. People with



SZ and healthy controls wear a smartphone with our program,
which collects information during their daily activities. Rele-
vant to this study is the audio captured by the cellphone, which
includes prompted and unprompted recordings (Sec. 3). Un-
prompted speech is sampled randomly over a prolonged period
in unconstrained environments, where we do not have control
over the placement of the cellphone with respect to the sub-
ject. Therefore, robust speech models are required to handle the
noisy audio conditions observed in naturalistic environments.
Detecting speech activity is the first step before implementing
other complex tasks, such as ASR or SER.

2.2. Voice Activity Detection in Noisy Environments

The primary challenge to accurately estimate voice activity in
our target domain is the presence of arbitrary, non-stationary
noise in naturalistic environments. This common issue has in-
spired similar efforts for effective VAD [1, 12, 13]. With a great
amount of available speech data, DNNs have been effective in
discriminating between complex speech signal and noise pat-
terns [14—18]. Many solutions have attempted to mitigate the
effects of noise using approaches such as speech enhancement
and signal denoising [14-16, 19]. Other VAD approaches have
incorporated related modalities [17, 18, 20] to increase predic-
tion accuracy by leveraging discriminative features that are in-
variant under audible noise (e.g., facial features [18,21]).

2.3. Transfer Learning using Teacher-Student Training

Teacher-student training is an effective domain adaptation
method where a successful “teacher” model trained in ideal
conditions is used to improve the generalization of a “student”
model designed to work in a specific target domain. This
method has led to improved performance on related speech
tasks such as ASR [22-25] and SER [26]. In particular, domain
adaptation has been shown to have positive effects on ASR [25]
using parallel data to adapt a model between similar speech do-
mains. The inductive bias passed when the student is initialized
with the well performing teacher parameters improves the gen-
eralization ability of the overall system, given that the source
and target domains are sufficiently similar. This paper applies
these techniques to the task of VAD with novel modifications
to incorporate speech denoising. To the best of our knowledge,
this is the first study using this formulation for VAD tasks.

3. Resources

Our key assumption is that emulating the recording conditions
in the target domain has a positive effect on the generalization
of the proposed transfer learning method. We achieve this goal
with additive noise recordings sourced from various naturalistic
corpora expected to be similar to those in the target domain.

3.1. Target Domain Recordings

The target domain data corresponds to several datasets collected
using a similar protocol for a total of 35 subjects. The protocol
includes unprompted recordings, where the smartphone records
the ambient audio for 5 minutes within 30-minute time windows
with start times randomly sampled throughout each day (partic-
ipants were asked to wear a round, visible pin, indicating they
may be recording audio). As a result, the recordings are often
sparsely voiced, with little to no speech activity in many seg-
ments. From this set we collect two subsets. The first is our test
set for evaluating VAD performance. Multiple recordings are
randomly selected for a total duration of 2.51 hours. Speech and
silence labels are created manually for these segments. We refer
to these recordings as farget domain - ambient (TD-Ambient).
The second subset contains noise recordings that we use for cor-

rupting data. This in-domain noise is gathered by taking a ran-
dom sample of the remaining ambient recordings and selecting
those without speech data for a total duration of 23.5 hours. The
set was partitioned into train (21.2 hours), test (1.12 hours), and
validation (1.17 hours) sets. We refer to these recordings as far-
get domain - noise (TD-noise).

The protocol also includes prompted recordings with bet-
ter recording conditions. It uses ecological momentary assess-
ment (EMA) [27], which are periodic surveys where the par-
ticipant answers questions about their emotional state. This
prompted nature often yields better recording conditions and
higher speech intelligibility as users speak more directly into
the smartphone’s microphone for 2 to 30 seconds. We create
a test set by randomly selecting from these recordings (1.08
hours). We refer to these recordings as target domain - EMA
(TD-EMA).

3.2. Other Recordings

We use a subset of the CRSS-4English-14 corpus [28] to train
the model with clean speech. Speech and silence labels for these
segments were created using forced-alignment [29]. These la-
bels serve as the ground truth for speech predictions. We use
117.1 hrs (train set), 6.60 hrs (test set), and 6.58 hrs (validation
set) of clean speech from the data collected from the speakers
with American accents. To collect naturalistic noise, we also
use a subset of the CHiMES dataset [30], a speech recognition
challenge for conversational speech across multiple interlocu-
tors in naturalistic, home environments. The corpus considers
a dinner party scenario, where the audio is recorded, fully tran-
scribed and time-aligned. We consider the segments with du-
ration of at least 500ms without speech. This approach creates
a noise corpus of 77.4 hours of audio across 178,224 segments
split into train (69.3 hrs), test (4.08 hrs), and validation (4.02
hrs) sets. We also use babble noise generated by overlaying sen-
tences taken from the TIMIT dataset. Speaker tracks are created
by randomly concatenating sentences, mixing seven speakers.
Krishnamurthy and Hansen [31] have shown that when audio
from seven or more simultaneous speakers are mixed, individ-
ual words are indistinguishable in the opinion of 100% of par-
ticipants surveyed, resulting in babble-like noise. To corrupt a
speech corpus, we concatenate noise recordings and adjust the
energy by fixing a target SNR when noise is added.

4. Proposed Approach

Our premise is that generating paired data points that emu-
late the domain of interest can improve performance on related
speech problems [25]. Figure 1 presents our proposed method
to achieve this goal, which is based on the teacher-student (T-
S) formulation. The teacher model is trained with clean speech
from the source domain (CRSS-4English-14 corpus). Knowl-
edge gained by a well-trained teacher within a well-known do-
main is then leveraged to train a student in a more difficult do-
main. The student model is trained with a parallel corpus cor-
rupted with additive, naturalistic noise. We expect that using
a loss that optimizes performance via the influence of inductive
priors taken from the teacher model aids the generalization abil-
ity of a student model. The priors established by a well-trained
speech model in ideal (uncorrupted) cases encode a useful opti-
mization criterion that can be used to minimize the divergence
of the teacher and student predictive distributions.

4.1. Teacher Model

We train the teacher model, implemented with two sequential
layers before classification, to discriminate between speech and
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Figure 1: Teacher-student approach for VAD using noise emu-
lation.

silence frames using a supervised deep learning framework.
The loss function of the teacher model is the binary cross en-
tropy criterion:

Lyaa(y,p) = — Y yilog (p:) (1)

icl
where p; is the ¢-th binary prediction generated by the model
for the i-th feature frame in a segment of audio with y; being
the corresponding label generated through forced-alignment.

4.2. Student Model

To train the student model, the teacher parameters are copied
before further training. We use a composite loss that combines
the cross entropy loss to predict speech activity with a mean
square error (MSE) loss that quantifies the distance between
the teacher and student embeddings. The signal representation
embedded at the input of the final classification layer of a DNN
encodes useful, global information about the output distribu-
tion given the input. However, compressing this vector into a
scalar during a many-to-one classification destroys a portion
of this information. Since the prior produced by our teacher
for speech predictions also involves the calculation of this final
layer embedding, this information can be leveraged to regular-
ize our VAD representation in the presence of noise using the
paired, uncorrupted representation. This can be interpreted as a
denoising effect as representations generated by noisy data are
penalized for straying from the clean representation. This tech-
nique minimizes the MSE between the embedding produced by
the teacher (er) and student (es) during training, where J in
Equation 2 is the dimension of the embeddings. We use the
output of the last recurrent network as our embedding.

1
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We train a student model by combining these loss functions
with the goal of producing an optimal VAD performance on a
non-ideal domain. We use the hyperparameter value oo = 0.2.
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4.3. Temporal Model

VAD is a time series problem where considering the predictions
from previous frames can benefit the voice activity prediction of
future frames. Providing a temporal context to our model can
help avoiding noisy transitions in the prediction between speech
and silence. We implement our approach with two alternative
recurrent neural networks (RNN). The first approach consists of
BLSTM networks. While this model is not causal, as it consid-
ers a backward pass, the model can be easily implemented with
LSTM if needed. The second approach is the CS-Hopfield net-
work [11]. Ramsauer et al. [11] proposed a modified Hopfield

energy function and update rule of the classical binary Hop-
field network, finding an equivalence between this method and
the attention mechanism of the Transformer [32]. The benefits
of the modern CS-Hopfield network has been demonstrated in
several applications [33,34], so we hypothesize that it may be
useful on VAD tasks. Furthermore, this approach is also more
computationally efficient than BLSTM, which is important for
VAD systems.

4.4. Implementation

The acoustic feature is a 26 Mel-filterbank (MFB) vector. We
also consider adding the 5 hand-crafted features used in the
ComboSAD proposed by Sadjadi and Hansen [3]: harmonic-
ity, clarity, prediction gains, periodicity, and perceptual spectral
flux. These features are extracted with an analysis window of
20ms with a stride of 10ms.

As shown in Figure 1, our proposed approach is imple-
mented with two sequential layers (BLSTM or Hopfield net-
works). We formulate the problem as a many-to-one task, where
an analysis window is used to predict the speech activity on
the central frame. The default value for the windows size is 11
frames, but this parameter is studied in Table 4. We fix the num-
ber of parameters used for each model by adjusting the hidden
state dimensionality for the BLSTM or the CS-Hopfield net-
works. The BLSTM is implemented with 128 nodes, and the
CS-Hopfield network has a hidden dimension of 2,238. These
configurations results in approximately 0.6M parameters. The
recurrent layers are implemented with ReLU. We use layer nor-
malization [35] to regularize model parameters and speed up
convergence. Then, we add a fully connected layer with a single
node, using a sigmoid activation. All other parameters for the
Hopfield network such as the number of heads and head scaling
are set according to the defaults set by Ramsauer ez al. [11]. All
models are optimized with the ADAM optimizer with a static
learning rate of 0.00001. The models are trained on the train
set, maximizing the performance on the validation set. The best
models are then evaluated on the test set.

5. Experiments

Due to the natural class imbalance present due to the random
sampling of a smartphone audio stream, we quantify the per-
formance of our system in the precision-recall space. Flach and
Kull [36] showed that naively plotting the precision and recall of
the system for unbalanced data according to thresholds presents
several issues. Instead, they measured performance with the
precision-recall-gain (PRG) curve. The area under the PRG-
curve (AUPRG) is analogous to a scaled version of the expected
F1-score. Therefore, we assess model performance using either
the AUPRG or F1-score.

First, we provide evidence of performance gains via do-
main emulation during model adaptation. This is accomplished
by showing how model performance varies as training noise is
varied across a set of speech domains. Table 1 shows the per-
formance of three teacher-student model pairs when the student
is trained on various noise conditions. All test cases are gen-
erated by applying the listed noise type to the same test set of
clean speech drawn from the CRSS-4English-14 corpus. For
simplicity, we only consider for this analysis the BLSTM-based
T-S model using MFB features. When training the student, the
corrupted training corpus is mixed at a fixed SNR of 0dB and
trained for 4 epochs. This is true for all other experiments. Ta-
ble 1 shows that the performance increases in all test conditions
that match the noise type used to train the student model. Inter-
estingly, we see generalization of some models to other noise



Table 1: Performance of the BLSTM-based T-S model when the
student models is trained and tested with different noise condi-
tions. Performance is measured with AUPRG values. The table
reports the results for the teacher (T) and student (S) models.
Cases with positive transfer are highlighted with bold text.

Test [ White0dB [ Babble 0dB [ CHiMES 0dB
Train | T S | T S | T S
CRSS-4English-14 [ 0.992 0970 | 0992 0.988 [ 0.992 0.985
+ White 0dB 0.870 0960 | 0859 0.799 | 0870 0.695
+ White 10dB 0951 0975 | 0951 0945 | 0951 00915
+ Babble 0dB 0434 0248 | 0390 0465 | 0434 0353
+ Babble 10dB 0.796 0587 | 0.769 0.810 | 0.796 0.709

+ CHIiMES5 0dB 0.897 0.845 | 0.889 0.957 | 0.897 0.958
+ CHIiME5 10dB 0.957 0919 | 0.956 0.984 | 0.957 0.981
-+ TD Noise 0dB 0.889 0.777 | 0.884 0.955 | 0.889 0.919
-+ TD Noise 10dB 0962 0.868 | 0.964 0.980 | 0.962 0.962
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Figure 2: F1 score for the baseline and proposed models when
the student model is trained with the CHIMES and TD Noise
conditions.

conditions, especially in the case of additive simulated babble
noise and noise from the CHiMES corpus. This positive transfer
on cases with mismatched noise conditions may be attributed to
some similarity between the train noise condition and the test
set. We also see that model performance is also dependent on
the similarities between the noise power of the train and test
sets, with increased performance at a matched SNR. Note that
the performance on clean conditions is expected to go down
in all cases as the model parameters are shifted away from an
ideal solution for clean speech. For the rest of the evaluation,
we train the student models using noise from the TD-noise and
the CHiMES5 noise sets, which are the closest noise conditions
to our target application.

Next, we evaluate the proposed models with real world per-
formance in terms of F1 score by considering model predic-
tions at a fixed threshold of 0.5 to obtain a binary VAD de-
cision. We evaluate within the target domain, considering the
TD-Ambient, and TD-EMA sets. We also consider the clean
conditions of the CRSS-4English-14 corpus. All our models are
trained with MFB and ComboSAD features. As a baseline, we
compare our approaches using the robust VAD (rVAD) method
proposed by Tan et al. [6], which is a speech enhancement-
based model. We also implement our approach without model-
ing the temporal information, replacing the recurrent networks
with fully connected layers (T-S FC). Figure 2 shows that our
models outperform the baseline method on both clean and noisy
target domains. The results shows that our models implemented
with recurrent networks are better than the model implemented
with fully connected networks, showing that modeling tempo-

Table 2: Ablation study on the T-S model to assess transfer
knowledge benefits. Performance is measured with AUPRG val-
ues. The models are trained with and without the T-S approach.

Model [ Test [ Without T-S | With T-S
T-S BLSTM | CRSS-4English-14 0.989 0.990
T-S BLSTM | TD-EMA 0.868 0.875

T-S BLSTM | TD-Ambient 0.750 0.766

Table 3: Ablation study on the BLSTM-based T-S model to as-
sess the benefit of adding ComboSAD features. Performance is
measured with AUPRG values for the teacher (T) and student
(S) models. Positive transfer cases are marked in bold.

Test MFB MFB+ComboSAD
T S T S
CRSS 4English-14 | 0.994  0.989 | 0.994 0.990
TD-EMA 0902 0.864 | 0.905 0.875
TD-Ambient 0.747  0.759 | 0.734 0.766

Table 4: Analysis of the proposed Hopfield and BLSTM based
S-T models using different temporal window sizes. Performance
is measured with AUPRG values. The table reports the results
for the teacher (T) and student (S) models.

. T-S HF T-S BLSTM
Window | Test T S T S
5 TD-Ambient | 0.714 0.737 | 0.701  0.717
11 TD-Ambient | 0.734 0.766 | 0.737  0.766
61 TD-Ambient | 0.819 0.790 | 0.743  0.806

ral information leads to improved VAD performance. The dif-
ferences are particularly clear in the TD-Ambient conditions,
where the recurrent architectures can more readily capture the
temporal dynamics of longer audio segments.

We conduct ablation studies that show the benefits of (1) us-
ing the teacher-student model, and (2) adding the ComboSAD
features. First, we compare our BLSTM-based T-S model with
a model trained with the cross entropy criterion on noisy speech
using the same DNN architecture without the teacher model pa-
rameters. Table 2 indicates that transferring knowledge to the
students leads to consistent improvements, especially for the
most challenging test domain (TD-Ambient). Second, we eval-
uate the benefits of augmenting our feature vector with Com-
boSAD features. We implement our BLSTM-based T-S model
with and without the five extra features used in the ComboSAD
framework (Sec. 4.4). Table 3 shows that combining MFB and
ComboSAD features results in consistent performance gains.

Finally, we conduct an analysis of the performance when
the evaluation feature window is varied. We train the systems
with MFB and ComboSAD features, testing the performance on
the TD-Ambient set. Table 4 shows the results of the BLSTM
and CS-Hopfield networks trained with a feature window size of
5, 11, or 61 consecutive feature frames. Increasing the window
size generally increases performance. We see positive transfer
for both models. The BLSTM T-S model exhibits a clear trend
where longer analysis windows leads to better performance.
This trend is not as clear with the Hopfield model, where us-
ing 61 feature frames results in negative transfer.

6. Conclusions

This paper proposed a novel VAD training method for domain
adaptation toward a real world healthcare application. The
approach consists of the teacher-student formulation with do-
main emulation via paired data. The approach leverages tempo-
ral information using recurrent networks implemented with ei-
ther BLSTM or CS-Hopfield networks. When the noise condi-
tions are emulated, the approach leads to important performance
gains, particularly for unconstrained audio. In future work, we
will compare these two architectures and their flexibility to be
adapted to unconstrained conditions using transfer learning.
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