
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024 917

Selective Acoustic Feature Enhancement for Speech
Emotion Recognition With Noisy Speech

Seong-Gyun Leem , Student Member, IEEE, Daniel Fulford , Jukka-Pekka Onnela , David Gard ,
and Carlos Busso , Fellow, IEEE

Abstract—A speech emotion recognition (SER) system deployed
on a real-world application can encounter speech contaminated
with unconstrained background noise. To deal with this issue,
a speech enhancement (SE) module can be attached to the SER
system to compensate for the environmental difference of an input.
Although the SE module can improve the quality and intelligibility
of a given speech, there is a risk of affecting discriminative acoustic
features for SER that are resilient to environmental differences.
Exploring this idea, we propose to enhance only weak features
that degrade the emotion recognition performance. Our model first
identifies weak feature sets by using multiple models trained with
one acoustic feature at a time using clean speech. After training the
single-feature models, we rank each speech feature by measuring
three criteria: performance, robustness, and a joint rank ranking
that combines performance and robustness. We group the weak
features by cumulatively incrementing the features from the bottom
to the top of each rank. Once the weak feature set is defined, we
only enhance those weak features, keeping the resilient features
unchanged. We implement these ideas with the low-level descriptors
(LLDs). We show that directly enhancing the weak LLDs leads
to better performance than extracting LLDs from an enhanced
speech signal. Our experiment with clean and noisy versions of the
MSP-Podcast corpus shows that the proposed approach yields a
17.7% (arousal), 21.2% (dominance), and 3.3% (valence) perfor-
mance gains over a system that enhances all the LLDs for the 10dB
signal-to-noise ratio (SNR) condition.

Index Terms—Feature selection, noisy speech, speech enhance-
ment, speech emotion recognition.

I. INTRODUCTION

INFERRING human behavior using speech is appealing given
the ubiquitousness of speech-based devices in daily life.

Important information for human-computer interaction (HCI)
is the emotion of a person, which plays a key role in her/his
decision-making process [1]. Therefore, recognizing emotion
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from speech has been an active research area [2], with appli-
cations in diverse areas such as health informatics, education,
entertainment, and surveillance. One challenge for speech emo-
tion recognition (SER) systems is the background acoustic noise
observed in recordings collected on real-world applications. A
corrupted speech signal can greatly disrupt the acoustic features,
reducing the prediction performance of the SER systems given
the mismatch between train and test conditions.

One way of attenuating the effect of noisy recordings in SER
tasks is to denoise the signal or acoustic feature so that the SER
system can receive a cleaner input. For example, Huang et al. [3]
improved the predictions of arousal and valence on speech
contaminated with white Gaussian noise by using spectral sub-
traction and perceptual masking. Zhang et al. [4] used an autoen-
coder with a neural network implemented with long-short term
memory (LSTM) layers to enhance Mel-frequency cepstral co-
efficient, yielding performance improvements in speech record-
ings contaminated with background noise from the CHiME
database [5]. Triantafyllopoulos et al. [6] improved the emotion
classification performance by enhancing the log magnitude spec-
trum of noisy speech with a convolutional neural network (CNN)
implemented with residual blocks. All these studies have aimed
to improve SER performance by making noisy features closer to
the clean features, using speech enhancement modules that affect
all the features. However, the enhancement models, which are of-
ten designed to improve speech quality, may affect the emotional
discriminative information conveyed on the features. Also, some
features may not need enhancement. We discovered that certain
acoustic features demonstrate robustness in SER systems, even
under noisy conditions [7]. By focusing solely on these robust
features, we achieved improved performance compared to using
all the features in noisy recording environments. This raises the
question: could an enhancement strategy, primarily designed to
enhance speech intelligibility, impact the discriminative power
of the enhanced features, particularly for these robust acoustic
features?

This study proposes to only enhance features that degrade the
performance in noisy recording conditions, without modifying
the rest of the features, which are robust against background
noises. We rank all features based on three criteria to select the
least robust feature set: the absolute recognition performance in
the target noisy condition (performance), the relative SER model
performance degradation from clean to noisy conditions (robust-
ness), and the summation of the ranks assigned by both previous
criteria (joint). With these criteria, the features are cumulatively
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added from the lowest rank to the highest rank to find the weak
feature set that needs to be enhanced by the acoustic feature
enhancement module. We evaluate the SER performance by
only enhancing the selected feature set, increasing the coverage
of enhanced features from 10% to 90%. The model with the
best performance on the development set is selected for the final
model, determining the features to be enhanced.

Our experiment with the clean and noisy version of the
MSP-Podcast corpus shows that the selective feature enhance-
ment strategy increases the performance over an SER system
where all the LLDs are enhanced by 17.7% (arousal), 21.2%
(dominance), and 3.3% (valence) in the 10 dB signal-to-noise
ratio (SNR) condition. Furthermore, our proposed method also
yields better performances than using a signal-based speech
enhancement. Compared with an SER system trained with
speech signal enhanced with the MetricGAN approach [8], the
proposed selective feature enhancement method yields relative
performance gains of 54.9% (arousal), 63.2% (dominance), and
68.1% (valence) in the 10 dB SNR condition.

The rest of the paper is organized as follows. Section II
summarizes the previous approaches for enhancing noisy speech
and dealing with noisy speech for speech emotion recognition.
Section III describes our database and acoustic features to ana-
lyze and evaluate our proposed feature enhancement framework.
Section IV explains our motivation and the description of the
proposed selective feature enhancement framework. Section V
describes our experimental settings and the baselines. Section VI
presents our experiments with the proposed selective feature
enhancement method for SER tasks. The section further an-
alyzes the feature enhancement methods by comparing them
with signal enhancement methods. Lastly, Section VII concludes
the paper by summarizing our contributions and future research
directions.

II. RELATED WORKS

A. Speech Enhancement

The main goal of a speech enhancement system is to increase
the quality and intelligibility of noisy speech contaminated
by a low sampling rate, restricted bandwidth, or background
noises. To accomplish this goal, the enhancement systems need
to suppress the noise while preserving the information of the
original speech.

Early studies formulated the speech enhancement problem
using classical strategies. For example, some studies formulated
a speech enhancement task as an additive noise estimation
problem [9], [10]. Their main objective was to estimate a noise
spectrum during non-speech activity, then subtract the estimated
additive noise from the noisy speech. There are also studies
that formulated a speech enhancement task as a filter estimation
problem. The approach finds the optimal filter that can minimize
the error between clean speech and denoised speech [11], [12],
[13]. Other studies viewed a speech enhancement task as a matrix
decomposition problem to find a subspace for clean speech and
another for the noises [14], [15], [16].

Deep learning solutions have emerged as powerful alterna-
tives for SE. The straightforward formulation for an SE task

is to train a neural network to map noisy speech into clean
speech. In this paradigm, features extracted from noisy speech
are fed into the neural network model. Then, the model is trained
to make its output to be similar to the corresponding clean
speech. Such model includes solutions based on deep belief
network (DBN) [17], recurrent neural networks (RNNs) [18],
convolutional neural networks (CNNs) [19], [20], and denoising
autoencoders [21], [22]. Furthermore, conditional generative
adversarial network (cGAN) architecture has been adopted to
improve the quality of the enhanced speech. Pascual et al. [23]
proposed the speech enhancement GAN (SEGAN) architecture.
The discriminator is trained to classify if the input speech is real
or created by the generator. The generator is trained to transform
noisy speech into clean speech with the adversarial goal of
deceiving the discriminator. Studies have improved this GAN-
based speech enhancement model using different strategies. For
example, Phan et al. [24] used multiple generators to improve
the quality of the enhanced speech. Li et al. [25] investigated
the use of a self-attention mechanism to make the enhancement
model exploit long-term characteristics in the input features.
Fu et al. [8] proposed MetricGAN, which uses common metric
scores for speech quality and intelligibility during the training
of the enhancement model as the targets of the adversarial train-
ing. These metrics include the perceptual evaluation of speech
quality (PESQ) [26] and the short-time objective intelligibility
(STOI) [27].

Unlike the aforementioned studies that only enhance the real
part of the speech spectrum, some studies investigated the use
of the imaginary part. Tan and Wang [28] used convolutional
recurrent network (CRN) that enhances the phase spectrum as
well as the magnitude spectrum. Hu et al. [29] proposed the deep
complex CRN (DCCRN), which uses the complex convolutional
block to simulate the complex-valued operation in the CRN-
based speech enhancement model.

B. Speech Emotion Recognition for Noisy Environments

Improving robustness to noise of SER systems has become
an active research area. Several studies have tried to solve this
problem by directly improving the robustness of the SER model.
One of the proposed solutions is to contaminate the clean speech
in the training set to augment the data. Lakomkin et al. [30]
contaminated the clean training set by adding arbitrary back-
ground noises and simulating reverberation. Tiwari et al. [31]
utilized various types of noises from the NOISEX-92 database.
They modulated white noise to augment the training data. This
strategy makes the SER model encounter the target noise dur-
ing training, building resilient solutions during inference when
similar noises are observed.

Another option is to view the noise-robust SER task as a
domain adaptation problem. Leem et al. [32] investigated the use
of ladder network [33] to improve the performance of SER in the
presence of noise. A ladder network is a strong framework for
compensating domain mismatches for SER [34], [35], [36], [37].
They applied the ladder network to the noisy SER task by decou-
pling the emotional and reconstruction embeddings to reduce the
influence of background noise on emotion predictions. Wilf and
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Provost [38], [39] used domain separation networks (DSNs) [40]
for SER in noisy speech. The approach simultaneously trains a
shared encoder with all the noisy conditions and multiple expert
encoders, each with an individual environmental condition. They
also applied an adversarial training, which minimizes the differ-
ence among the outputs from the expert encoders to generalize
the performance in unseen noisy conditions.

Other approaches to improve SER performance in noisy
speech are to either use noise-robust features or discard noisy
frames or segments in the speech signal. Georgogiannis and
Digalakis [41] used the Teager energy-based Mel-frequency cep-
stral coefficient (MFCC) to minimize the impact of background
noise on the input feature. This feature set has been shown to be
robust to noise in other speech tasks. Schuller et al. [42] showed
that feature reduction using the information gain ratio improves
the SER performance not only in a clean condition, but also in
noisy conditions. Leem et al. [7] proposed a feature selection
framework for SER by assessing the noise robustness of each
acoustic feature in the noisy condition. Pandharipande et al. [43]
used a voice activity detection module to discard noisy frames
for SER in noisy conditions.

This study focuses on the feature enhancement method, which
does not change the original SER model, but adds a speech
enhancement module before feeding the noisy speech into the
recognition model. Huang et al. [3] showed that spectral sub-
traction and perceptual masking-based speech enhancement im-
prove the performance of arousal and valence prediction in noisy
conditions. Juszkiewicz [44] applied histogram equalization to
MFCC, which increases the emotion classification accuracy in
noisy audio. Triantafyllopoulos et al. [6] used a convolutional
neural network with residual blocks as a feature enhancement
module to improve SER performance. All of those studies
equally apply the enhancement strategy to the entire feature set.
Unlike these studies, our solution is to enhance only the weak
features that disrupt the prediction in the presence of noise and
keep the features that are not highly affected by background
noises.

III. RESOURCES

A. The MSP-Podcast Corpus

SER models need to be evaluated with a dataset that can
simulate realistic scenarios, since the main goal of a noise-robust
SER task is to improve the SER performance in real-world envi-
ronments. For this reason, we used the clean [45] and noisy [32]
versions of the MSP-Podcast corpus.

The clean version of the MSP-Podcast corpus contains sponta-
neous emotional speech samples collected from various record-
ings available in audio-sharing websites. From these recordings,
the protocol chooses samples that are expected to have balanced
emotions by using the retrieval approach proposed in Mari-
ooryad et al. [46]. Samples that have background music or noisy
speech (the estimated SNR is lower than 20 dB) are removed. All
samples are formatted at a sampling rate of 16 kHz. A modified
version of the crowdsourcing protocol proposed in Burmania
et al. [47] is used to annotate the emotion for each sample.

At least five different evaluators annotated each sample with
emotional attributes and primary and secondary emotions. We
focus on the emotional attribute scores for arousal (calm versus
active), dominance (weak versus strong), and valence (negative
versus positive) collected with a seven-point Likert-scale. The
study uses release 1.8 of the corpus, which has more than 113
hours of annotated emotional speech samples.

The noisy version of MSP-Podcast corpus, which was intro-
duced in our previous work [32], considers unconstrained noises
that are highly likely to appear in real-world applications. We
directly recorded all speech samples in the MSP-Podcast corpus
with non-stationary noise sounds to simulate real-world record-
ing conditions. Noise sounds are collected from traditional
radio shows without copyright. Those sounds contain human
voices, background music, and various types of sound effects.
We simultaneously played speech and noise sounds with the
speakers of two portable devices. Then, we recorded those mixed
sounds on a smartphone, mimicking the noisy speech collected
from real-world applications. We changed the distance between
the speakers and the smartphone to achieve different levels of
SNR. We collect a one-minute speech recording before the data
collection to estimate the SNR of the recording condition. We
move the devices until approximately obtaining the following
conditions: 10 dB, 5 dB, and 0 dB. We named these settings
by their target SNR. The emotional labels for this version of
the corpus are directly transferred from the clean version of the
MSP-Podcast corpus.

To train the speech enhancement model, we use 43,361 speech
segments from clean and noisy speech. These segments have not
been annotated yet, so they do not belong to release 1.8 of the
corpus. Those samples are not used for training the SER models.
We train and evaluate the SER models by using the partitions of
the MSP-Podcast corpus. The training set has 44,879 speaking
turns. We always train the SER models with clean speech. We
use 7,800 clean samples from the development set to select the
best model. To assess the robustness of individual features, we
use the noisy recordings in the development set (e.g., 7,800 noisy
samples for each target SNR condition). For the evaluation,
we use four versions of the 15,326 samples from the test set,
including the clean and three noisy recording conditions.

B. Acoustic Features

Our study uses the 65 low-level descriptors (LLDs) from
the 2013 Computational Paralinguistics Challenge (ComParE)
features set extracted with the OpenSMILE Toolkit [48]. Table I
lists the LLDs. We use the standard setting used in OpenSMILE.
A 60 ms window is applied for the zcr feature, F0 and voice
quality feature group. The other LLDs are estimated with a 25 ms
window. All the features are sampled with a 10 ms step size. This
approach creates a frame-level representation for each speech
signal.

We apply the Z-normalization to the features to avoid shifts in
the feature distributions caused by environmental noise condi-
tions. We regard the development set of each noisy recording
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TABLE I
LLDS OF THE COMPARE 2013 FEATURE SET

condition as speech samples obtained from the target envi-
ronment. Then, we use their mean and standard deviation to
normalize the features from the noisy recording conditions. For
clean speech, we normalize the features by using the mean and
standard deviation of the clean training set, since we already
have a training set in the clean condition. We clip the value of
each feature if they exceed ±10 after the normalization to avoid
outlier values affecting the training process.

IV. PROPOSED APPROACH

A lesson learned from the study in Leem and Busso [7] was
that there exist LLDs that are robust against environmental
differences. If the goal of a feature enhancement strategy is
to improve speech quality, as is commonly the case, it is not
guaranteed that the enhanced features will retain emotional
information. Using these insights, we propose to selectively
enhance only the features that are most affected by noise.
This section presents a preliminary analysis that serves as the
motivation for our proposed approach (Section IV-A). Then,
we present the feature enhancement strategy adopted in this
study (Section IV-B). Then, we describe the proposed strategy
to recognize emotions in noisy speech (Section IV-C).

A. Motivation

We conduct a preliminary analysis to illustrate the need for
a selective enhancement framework that only processes less
resilient features. We conduct a controlled experiment to identify
which features are resilient to a target noisy environment. We
estimate the performance of SER systems trained with individual

LLDs with clean features in the target noisy condition (i.e., only
one feature per model). We construct a feature probe model set,
consisting of multiple SER models where each model is trained
with a different LLD. Since our experiment uses LLDs from
the ComParE 2013 feature set (Section III-B), our feature probe
model set has 65 different models each of them trained with one
LLD.

We train separate SER models for arousal, dominance, and
valence. The SER model is built following the baseline intro-
duced in the study of Parthasarathy and Busso [34]. This model
consists of five blocks of 1D convolution layers and max-pooling
layers. Then, we add two fully connected layers, each of them
implemented with 256 nodes. The final layer is the output layer.
We use the rectified linear unit (ReLU) as the activation function
for the convolution and fully connected layers, and a linear
transformation for the output layer. We increase regularization
with dropout with a rate set to p=0.1. The dropout is placed
between the input and first convolution layer, and between the
last convolution layer and the first fully connected layer. We use
the multitask learning approach proposed in Parthasarathy and
Busso [49], where the model simultaneously predicts the scores
for all three emotional attributes during training. Equation (1)
illustrates the cost function of our model.

L = α× Laro + β × Lval + (1− α− β)× Ldom (1)

where Laro, Lval, Ldom denote the loss functions for arousal,
valence, and dominance, respectively, and α and β denote the
weight of each loss function. We choose α = 0.7, β = 0.3 for
arousal, α = 0.0, β = 0.2 for dominance, and α = 0.1, β = 0.8
for valence. These settings showed the best performance re-
ported in Parthasarathy and Busso [34] for both in within-corpus
and cross-corpora evaluations. We train the model to maximize
the concordance correlation coefficient (CCC) by minimizing
the term 1− CCC for each loss function. We use the Adam
optimizer [50] with a learning rate set to 0.00005 to optimize
the parameters. We train models for 25 epochs with a mini-batch
of 512 sentences.

To visualize the differences in SER performance among mod-
els trained with individual LLDs, we run 10 experiments by
changing the initial weights of the emotion recognition models.
Fig. 1 represents the average CCC values over 10 trials of each
feature probe model. The figure also shows the result of an SER
model trained with all the LLDs. The models are trained with
clean speech but tested with either the clean or the 10 dB condi-
tions. The nomenclature of the features is listed in Table I. The
figure shows that the model trained with all the LLDs achieves
the best performance in the clean condition. For the 10 dB
condition, however, there are models trained with some LLDs
that showed better performance than using all the LLDs (e.g.,
SpectHarm for arousal and valence and RASTA-band[13] for
valence). This result is particularly clear for valence when only
five LLDs out of 65 showed worse performance than the model
trained using all the LLDs. The insights from this evaluation
indicate that there exist features that degrade the performance
when they are combined with other robust features when the
models are tested on noisy conditions. Some features, however,
are robust enough and show better performance than a model
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Fig. 1. CCC of SER models trained with a single LLD in clean and noisy conditions (10 dB). The red bars denote the performance of the SER model trained and
tested with all the LLDs. In a noisy condition, training with a single robust feature leads to better performance than training the model with all the LLDs.

trained with all LLDs. With these ideas, we propose to enhance
only weak features and keep the robust features unchanged to
increase the SER performance of our model.

B. Feature Enhancement

Before explaining our proposed selective feature enhance-
ment approach, we describe the enhancement method adopted
in this study. Our enhancement model relies on a generative
adversarial network (GAN) architecture, which has shown good
performance for signal enhancement [8], [23]. In our implemen-
tation, the discriminator is trained to determine if the LLDs are
extracted from real signals or created from the generator. The
generator is trained to transform LLDs extracted from noisy
speech into the ones extracted from clean speech. The adversarial
loss aims to deceive the discriminator by making its output
more realistic. After training the feature enhancement model,
the LLDs from the noisy speech are enhanced by the trained
generator. Previous studies have shown that adding adversarial
loss with a regression loss can improve signal-based speech en-
hancement models [23], [51]. We follow this approach, training
the generator with an adversarial and a simple regression loss.
We use the mean squared error (MSE) between the enhanced
and corresponding clean LLDs for our regression loss.

The generator, G, consists of four layers of 512 bi-directional
gated recurrent unit (GRU) [52], an output layer with a linear
activation function, and a residual connection from the input
layer to the output layer. The discriminator, D, consists of three

layers of 32 bi-directional GRU, and an output layer imple-
mented with the sigmoid activation function. The generator and
the discriminator are implemented with dropout with a rate p=
0.2 for all the hidden layers. We adopt the least square generative
adversarial network (LSGAN) as the cost function to train our
feature enhancement model, as illustrated in (2),

LD =
1

2
(D(x̂)− 1)2 +

1

2
(D(G(x̂))− 0)2

LG =
1

2
(D(G(x̂))− 1)2 + (G(x̂)− x)2 (2)

where LD denotes the loss function for the discriminator, LG

denotes the loss function for the generator, x denotes the clean
feature vector (i.e., LLDs extracted from the clean speech), and
x̂ denotes the noisy feature vector (i.e., LLDs extracted from
the noisy speech). The discriminator is trained to predict 1.0 if
the given LLD is from real speech, and 0.0 if the given input is
generated by the generator. The generator is trained to deceive
the discriminator so that the discriminator predicts 1.0 from the
generator’s output. This loss function makes the generator create
realistic acoustic features. To balance the loss between the gen-
erator and the discriminator, we update the generator 10 times
more than the discriminator. As mentioned in Section III-A, we
use the samples that have not been annotated with emotional
labels from the clean and noisy versions of the MSP-Podcast
corpus. We use 30,352 sample pairs to train the enhancement
model and 13,009 samples to find the best architecture for the
feature-based enhancement model.
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Fig. 2. Diagram of our proposed selective feature enhancement model. With the feature probe models, we select the robust and weak feature sets for the noisy
condition. Once they are selected, we enhance only the weak features set, keeping the robust features unchanged. Finally, we concatenate the enhanced and robust
features to be used as input for the SER model.

C. Selective Feature Enhancement Strategy

Fig. 2 shows our proposed approach. Instead of enhancing
all of the features, we selectively enhance only weak features.
The approach starts by identifying robust features. Once the
robust feature set is defined, we mask the robust features from
the speech enhancement model. We concatenate the unaltered
robust features and the enhanced weak features and feed them
into the SER model to predict the emotional attribute scores.

A crucial step in our approach involves identifying robust
features that remain resilient to SER under noisy conditions. We
rely on the classification experiments conducted in Section IV-A,
where we train and evaluate SER models with one feature at
a time. We test three criteria to rank the LLDs: performance,
robustness, and performance+robustness. The performance cri-
terion considers the absolute prediction performance in a noisy
environment. We use CCC as the performance metric, ranking
the feature that has the highest CCC at the top of the list, and
the feature that has the lowest CCC at the bottom of the list.
The robustness criterion considers the performance decrease of
the SER system from the clean environment to the target noisy
environment. In our preliminary experiment, we found that using
the relative decrease in performance favored features leading to
low CCC in the clean condition. These features are not expected
to contain discriminative emotional information. Therefore, we
decide to use the absolute performance difference between the
clean condition and the target noisy condition. Based on this met-
ric, we rank the feature that has the lowest performance drop at
the top of the list, and the feature that has the highest performance
drop at the bottom of the list. The performance+robustness
criterion, which we refer to as the joint criterion, considers the
two previous criteria. We combine the two ranks by adding their
relative order to the ranked list. Features at the top of the list
have good performance in the presence of noise, achieving CCC
values that are not too different from the CCC values observed
under clean conditions. We create separate lists with the ranking
for arousal, dominance, and valence.

Once the LLDs are ranked, we cumulatively include LLDs
based on each rank to construct the weak feature subsets from
the bottom to the top. Using one of the three criteria, we add
LLDs in increments of 10% from the bottom to the top of the
list. Since only the low-ranked features in each criterion are
enhanced, we can prevent the resilient features from losing their
original discriminate emotional information by the enhancement
model. The SER model follows the same architecture described
in IV-A. The only difference is that the models are trained with
65 LLDs. We only change the input channel size of the first 1D
convolution layers from 1 to 65 to accommodate 65 LLDs.

We evaluate the CCC performance on the development sets
for the clean and 10 dB conditions per emotional attribute. We
visualize performance changes using each criterion and each
feature coverage by running ten trials with different initializa-
tion, reporting the average CCC obtained on the development
set in the 10 dB condition. Notice that we do not use the test set
for this experiment, since selecting the weak and robust features
is determined during training. We compare the proposed method
with a baseline selection method, where the enhanced features
are randomly selected, and with a model trained with a baseline
model where all the LLDs are enhanced.

Fig. 3 reports the average CCC values as we increase the
percentage of enhanced features. For arousal and dominance,
we observe important CCC gains using the proposed selective
feature enhancement approach. We observe similar performance
to the model trained with all the enhanced features even when
10% or 20% of the features are enhanced using the robustness or
joint criteria. The best performance is obtained when enhancing
90% of the features for arousal and 80% of the features for
dominance using the robustness criterion. For valence, the best
performance is obtained when 90% of the features are enhanced,
using the performance criterion. This result shows that there
exists a robust feature set that does not need to be enhanced
to improve the prediction. Interestingly, Fig. 3 does not show
improvements when the features are randomly selected. The
improvements are not obtained by enhancing a small number
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Fig. 3. CCC in the 10 dB condition of SER models trained with different feature coverage. The feature sets are cumulatively created by adding LLDs based on
the performance, robustness, joint, and random criteria. The red dashed lines mark the performance of a baseline trained using all the LLDs.

of features. The CCC improvements are observed by enhancing
just the weak features.

Based on the results in Fig. 3, we use the robustness criterion
for arousal and dominance, and the performance criterion for
valence. We select the feature group that shows the best perfor-
mance among all the feature groups. We use 90% (arousal), 80%
(dominance), and 90% (valence) feature coverage for testing on
the 10 dB condition. We replicate the same process for testing
on the 5 dB and 0 dB conditions using the corresponding noisy
development set. For the 5 dB condition, we use 90% (arousal),
90% (dominance), and 90% (valence) feature coverage. For the
0 dB condition, we use 90% (arousal), 80% (dominance), and
90% (valence) feature coverage.

V. EXPERIMENTAL SETTINGS

A. Implementation

In our experiment, each emotion recognition model is trained
to predict arousal, dominance, or valence. We use the clean
version of the MSP-Podcast corpus to train the SER models.
We test them with three different noisy conditions (10 dB,
5 dB, 0 dB) in the noisy version of the MSP-Podcast corpus.
We consider matched and mismatched conditions. The matched
condition uses the same environmental conditions for the en-
hancement model (train set), feature selection (development set),
and evaluation of SER experiments (test set). The mismatched
condition uses one environmental condition for the enhance-
ment model (train set), and feature selection (development set),
and another for the evaluation of SER experiments (test set).
For mismatched conditions, we use the noisy speech from the
10 dB condition for training the feature enhancement model
and selecting robust and weak features, and the noisy speech
from the 5 dB and 0 dB conditions for testing the models.
We run ten trials to evaluate the significance of our proposed
selective feature enhancement approach. For each experiment,
the emotion recognition models are initialized with different
values. We also variate the enhancement model among trials by
saving the model obtained every 50 batches. Then, we select the
models achieving the best 10 performances in the development
set for the enhancement model. We conduct a two-tailed Welch’s
t-test to evaluate the methods. We assert significance at p-value
≤ 0.025.

B. Signal-Based Enhancement Baselines

We compare our selective feature enhancement models with
SER models trained where all the features are enhanced. We use
two types of signal-based enhancement models: MetricGAN [8]
and DCCRN [29]. MetricGAN uses a generative adversarial
network that is the same as our feature enhancement model
(Section IV-B). However, MetricGAN enhances the magnitude
spectrum instead of the acoustic feature, as our approach which
directly enhances the LLDs extracted from the noisy signal.
After using MetricGAN, we extract the LLDs from the enhanced
signal. When training MetricGAN, the discriminator is trained
to predict the normalized PESQ and STOI metrics. The scores
of PESQ and STOI range from −0.5 to 4.5 and from 0 to 1,
respectively. We apply min-max normalization to the PESQ
so that the best score is 1 and the worst score is 0, matching
the range for STOI. The discriminator is trained to predict the
normalized PESQ and STOI scores from the generator’s output.
For example, when clean speech is fed into the discriminator,
its output should be 1. The generator is trained to produce clean
speech by making the output of the discriminator to be 1, which
means that the input of the discriminator is clean. We follow
the same architecture and training procedure as described in
the study of Fu et al. [8]. The only difference is that we update
the generator 10 more times than the discriminator to balance the
loss between the generator and the discriminator. The noisy ver-
sion of the MSP-Podcast corpus contains various non-stationary
noises. In contrast, the original study of Fu et al. [8] used speech
contaminated with stationary noise including machinery noise
and water sounds. Therefore, we assume that enhancing our
noisy corpus is a harder task than enhancing the speech in the
original study, which makes the discriminator learns faster than
the generator.

When using DCCRN, we also enhance the signal, before ex-
tracting the LLDs from the enhanced signal. However, DCCRN
also enhances the phase spectrum (MetricGAN only enhances
the magnitude spectrum). By using complex convolution oper-
ation, DCCRN is trained to generate a clean spectrogram from
the noisy one by simultaneously enhancing the magnitude and
phase of the spectrum. Unlike MetricGAN, it does not exploit the
adversarial training procedure, but only uses the scale-invariant
source-to-noise ratio (SI-SNR) loss by using a clean spectrum
and the enhanced spectrum (i.e., the output of DCCRN). We
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TABLE II
PERFORMANCE OF THE SIGNAL-BASED ENHANCEMENT MODELS USING THE

PESQ AND STOI METRICS

follow the same architecture and training procedure as described
in the original work [29].

For our experiment, we want to avoid the data mismatch
problem in training the enhancement model. Therefore, we train
and test this module on the MSP-Podcast corpus. This strategy
leads to a better result (PESQ score = 2.190) than using a
separate corpus such as the DNS-3 challenge database [53]
(PESQ score = 1.739), which includes additive ambient noise
sounds without speech and synthetic reverberation. We train both
signal-based enhancement models with the three conditions of
the noisy version of the MSP-Podcast: 10db, 5db, and 0db. In
our preliminary study, we observe that training the enhancement
model only with a low SNR condition does not yield better sound
quality even when the test set has the same condition used during
training. For this reason, we borrow the curriculum learning
strategy. We first train the model with the higher SNR condition
(easier task). Starting with this model, we train with the desired
lower SNR condition (harder task). For example, when training
the enhancement model with the 5 dB condition, we first train
the model with the 10 dB condition, before retraining the model
with the 5 dB condition.

To make a fair comparison, we need to assure that both
signal-based enhancement models improve the quality and the
intelligibility of the noisy signal. For this reason, we measure
the PESQ [26] and STOI [27] metrics with the clean, enhanced
and noisy speech signals. Table II shows the sound quality from
both enhancement models. Our analysis shows that both models
improve the signal quality and intelligibility of the noisy speech,
suggesting that both enhancement models are well-trained.

VI. EXPERIMENTAL EVALUATION

A. Matched Conditions

First, we analyze the performance of our approach where the
noise level is the same for training the enhancement model,
setting the feature selection criterion and testing the model.
Table III shows the average CCC value over the ten trials for each
enhancement method. Both signal-based enhancement baselines
fail to improve the performance for arousal and dominance in the
low SNR condition. In contrast, the feature-based enhancement
always shows better performance than the baselines for all types
of emotional attributes and environmental conditions. This result
shows that enhancing the quality of speech does not always
lead to performance improvements for SER tasks. Instead of
extracting the LLDs from the enhanced signal, it is better to di-
rectly enhance the noisy LLDs to increase the performance. We

TABLE III
CCC OF MODELS USING ROBUST FEATURES AND EACH ENHANCEMENT

METHOD FOR THE 10 DB, 5 DB, AND 0 DB CONDITIONS

will further analyze why the feature-based enhancement method
performs better than the signal-based enhancement method in
Section VI-E.

Table III shows that our selective feature enhancement method
further improves the performance compared to a system that
enhances all the features. In the 10 dB condition, our proposed
method improves the performance of the approach that enhances
all the features by 17.7% for arousal, 21.2% for dominance,
and 3.3% for valence. Our result indicates that there exist fea-
tures that are already resilient to the noise and can deteriorate
the recognition performance if they are enhanced. This result
highlights the importance of assessing the noise robustness of
each feature before the feature enhancement module. According
to the result, our performance and robustness criteria can be
good options for selecting the discriminative features that should
be kept and the ones that should be enhanced. Table III also
shows that while using only robust features without the feature
enhancement module performs better than the baselines, it is
not better than enhancing all the features or our selective feature
enhancement approach which achieves the best performance.
This result indicates that it is important to combine robust
features with the enhanced weak features.

B. Mismatched Conditions

We also evaluate the models in mismatched conditions. The
enhancement model is trained with the 10 dB condition. We
also select the coverage and best feature selection criterion
using the 10 dB condition. Then, the models are tested with
either the 5 dB or 0 dB condition. Table IV shows that even
when the enhancement model is trained with mismatched SNR
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TABLE IV
CCC OF MODELS USING EACH ENHANCEMENT METHOD FOR THE 5 dB AND

0 dB CONDITIONS, USING THE ENHANCEMENT MODEL TRAINED

WITH 10 dB CONDITION

conditions, the feature-based enhancement model shows better
performance than other methods. Both signal-based enhance-
ment baselines fail to achieve significant performance improve-
ments over a model that does not incorporate any enhancement
method. In fact, these approaches result in lower performance
for most conditions. In contrast, the performance of our selective
feature enhancement approach is significantly better than the
model without enhancement and the signal-based enhancement
methods. This result shows the strength of the feature-based
enhancement approach in mismatched SNR conditions. Even
when there is no information about the SNR level in the target
environment, the feature-based enhancement model can improve
the recognition performance.

Even though the feature selection is performed with a mis-
matched dataset, our selective feature enhancement can further
improve the performance of a model trained by enhancing all
features for arousal and dominance. When we compare our
model with the feature enhancement approach, we observe
performance gains of 9.9% (5 dB) and 8.2% (0 dB) for arousal,
and 12.1% (5 dB) and 8.7% (0 dB) for dominance. The per-
formances for valence are very similar. Therefore, enhancing
only weak features is still an effective approach even when the
features are assessed with speech collected in an environment
with mismatched conditions.

C. Multi-Noise Condition Training

In Sections VI-A and VI-B, we use only one SNR level to
train the enhancement model for our experiments to provide the
results when SNR is totally matched or mismatched between
training and testing conditions. However, it is common to use
multiple SNR levels to increase the generalization of real-world
conditions. Therefore, we also compare the performance of
using multiple SNR levels to train the enhancement model to
validate the generalization ability of our proposed selective
feature enhancement method.

We train the single feature enhancement network with a range
of SNR levels. The enhancement model is trained with 10 dB,

TABLE V
CCC OF MODELS USING MULTIPLE SNR LEVELS FOR TRAINING FEATURE

ENHANCEMENT METHOD IN 10 dB, 5 dB, AND 0 dB CONDITIONS

5 dB, and 0 dB conditions. We randomly select SNR levels
among those three SNR levels for each noisy speech sample
during training. We also select the robust features by using
multiple SNR levels. We first define the best coverage for each
SNR level and emotional attribute. We randomly select the best
coverage for each attribute among those three SNR levels. We
test this framework with the 10 dB, 5 dB, and 0 dB conditions.

Table V illustrates the result of enhancing all the features and
our proposed selective feature enhancement with multiple SNR
levels. Consistent with the results in matched conditions, using
our proposed selective feature enhancement method generally
shows better performance than enhancing all the features in
the multiple SNR condition. For example, our selective fea-
ture enhancement method yields the best performance for the
arousal prediction task across all conditions. This result shows
that our approach works well in predicting arousal, even when
training the model with multiple SNR levels. However, our
proposed method does not yield significantly better performance
for dominance and valence in the 5 dB and 0 dB conditions,
which have low SNR levels. This finding is different from the
result in mismatched conditions, where the robust features are
consistently selected by the 10 dB condition. This result shows
that the robust features need to be selected by fixing the SNR
level, even when the SNR level is mismatched from the testing
condition.

Compared with training in matched conditions (Table III),
the training of the feature enhancement model with multi-SNR
conditions shows lower performance in the 10 dB condition, but
better performance for arousal and dominance in the 5 dB and
0 dB conditions. We assume that training the feature enhance-
ment model with a low SNR level condition makes the training
difficult, which could be alleviated by introducing multiple
SNR level conditions where some samples have higher SNR.
Interestingly, the multi-SNR condition does not show better
performance for valence across all the conditions. This result
indicates that including a high SNR level in the enhancement
model’s training set does not lead to improved performance for
valence in noisy conditions.
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TABLE VI
CCC OF MODELS IN THE NOISY VERSION OF THE IEMOCAP CORPUS

D. Experiments in Different Data Distribution

Previous sections provides our experimental results using the
clean and noisy version of the MSP-Podcast corpus. To assess
our model in different data distributions, we test our model
with a different emotional speech corpus and different types
of noise sounds. We use the IEMOCAP corpus [54] for our
clean speech and contaminate it with the noise sounds from the
DNS-3 challenge dataset [53]. Each clean speech sample in
the IEMOCAP corpus is contaminated with a noise sound in the
DNS-3 challenge dataset, where the SNR level ranges between
−5 dB and 20 dB. We also add real and synthetic room impulse
responses to contaminate the IEMOCAP speech samples. We
use this clean and noisy version of the IEMOCAP corpus to train
the emotion recognition model, feature probe model, and feature
enhancement model. The IEMOCAP corpus has five sessions
in its corpus. We use three sessions for the training set, one
session for the development set, and the remaining one session
for the testing set. We do not overlap the noise sounds among the
training, development, and testing sets when contaminating the
speech samples of the IEMOCAP corpus. The best coverages
for the noisy version of the IEMOCAP corpus are 70% with the
performance criterion for arousal, 20% with the performance
criterion for dominance, and 50% with the joint criterion for
valence. We compare the model trained without using feature
enhancement, with enhancing all features, and with our proposed
selective feature enhancement model. We report the average
CCC of five trials with different feature enhancement models.

Table VI compares the SER performance of these models in a
noisy condition for the IEMOCAP dataset. Our proposed selec-
tive feature enhancement method yields the best performance for
all the emotional attributes in the noisy version of the IEMOCAP
corpus. Our proposed framework improves the performance by
5.1% (arousal), 7.9% (dominance), and 45.2% (valence) com-
pared with the approach that enhances all the LLDs. This result
demonstrates that our proposed selective feature enhancement
framework can be applicable to the different emotional speech
data distribution and noise types.

E. Feature-Based or Signal-Based Enhancement

As we can see in Sections VI-A and VI-B, using signal-based
enhancement usually performs worse than using feature-based
enhancement. Moreover, the use of signal-based enhancement

TABLE VII
MSE AND CORRELATION COEFFICIENT BETWEEN THE ENHANCED FEATURES

USING EITHER THE METRICGAN APPROACH OR THE FEATURE-BASED

ENHANCEMENT METHOD AND THE LLDS EXTRACTED FROM THE CLEAN AND

10 dB CONDITIONS

sometimes degrades the performance of a system trained without
any enhancement method. For this reason, this section analyzes
in more detail why feature-based enhancement is better than
signal-based enhancement for SER tasks in a noisy environ-
ment. For signal-based enhancement, we select the MetricGAN
approach, which is one of the baselines that we used in the
previous evaluations. For feature-based enhancement, we use
the GAN-based feature enhancement model. For the analyses
in this section, we enhance the noisy speech from the 10 dB
condition of the noisy version of the MSP-Podcast corpus.

We first analyze which enhancement method yields better
features. We expect that the new features after the enhancement
process will be close to the features from clean speech, and
far from the features from noisy speech (10 dB) before the
enhancement. We calculate the mean squared error (MSE) and
correlation coefficient between the LLDs generated from each
enhancement method and the LLDs extracted from either the
clean or noisy speech signals. For the signal-based enhancement,
we first enhance the noisy speech signals and then extract the
LLDs from the enhanced signals. For the feature-based enhance-
ment, we first extract the LLDs from the noisy signal and then
enhance the extracted LLDs. Table VII shows the results. The
LLDs extracted from the speech enhanced by the MetricGAN
approach have a shorter distance to the noisy LLDs than to the
clean LLDs, indicating that the enhancement process was not
very successful. In contrast, the LLDs enhanced with the feature-
based enhancement approach have a shorter distance to the clean
LLDs than to the noisy LLDs. These results are also supported by
the correlation results. Using signal-based enhancement leads to
LLDs that are very correlated to noisy LLDs (ρ = 0.962). This
correlation is reduced when using feature-based enhancement
(ρ = 0.858). Even if the speech quality and intelligibility are
improved with the signal-based enhancement method, it does
not help to improve the acoustic features needed for the SER
task.

We conduct a discriminative analysis per feature of the
LLDs extracted from the noisy and enhanced speech signal,
and the LLDs enhanced by our feature enhancement model.
Each SER model is trained with a single LLD using the same
approach described in Section IV-A using the clean version of the
MSP-Podcast corpus. The single-feature models are then eval-
uated using LLDs from these three feature sets (noisy speech,
signal-enhanced LLDs, and feature-enhanced LLDs). We train
10 different single-feature models for each LLD, reporting the
average performances in the test set. Fig. 4 shows the perfor-
mance for some of the LLDs. Interestingly, the performances



LEEM et al.: SELECTIVE ACOUSTIC FEATURE ENHANCEMENT FOR SPEECH EMOTION RECOGNITION WITH NOISY SPEECH 927

Fig. 4. Performance of models trained with one feature evaluated with LLDs
enhanced with the feature-based enhancement approach, and with LLDs ex-
tracted from the signal-based enhanced speech (MetricGAN), and noisy speech
(10 dB condition). We illustrate 20 LLDs corresponding to the top 10 and bottom
10 CCC performance in the 10 dB noisy condition.

of single-feature models tested with LLDs extracted from either
the enhanced signal or noisy speech are very similar. However,
the performances using feature-based enhancement are very
different from the performance obtained with LLDs from noisy
speech. Although feature-based enhancement decreases the per-
formance for some features, we observe that this approach leads
to the highest performance for some other features (e.g., for
arousal SpectHarm, SpectFlux, fband1000–4000, and mfcc[2]).
We hypothesize that these high-performing features can com-
pensate for the low performance of other features when all LLDs

TABLE VIII
AVERAGE PERFORMANCE OF SER MODELS TRAINED WITH ONE LLD WHEN

EVALUATED WITH THE TOP FIVE LLDS FOR EACH OF THE CONDITIONS (NOISY

SPEECH, SIGNAL-BASED ENHANCEMENT, AND FEATURE-BASED

ENHANCEMENT)

TABLE IX
AVERAGE CCC PERFORMANCE ACHIEVED BY TESTING THE SER MODELS

TRAINED WITH ONE LLD WITH THE WEAK FEATURES IDENTIFIED IN

SECTION IV-C

are combined. We quantify this hypothesis by averaging the
SER performance for the top five LLDs extracted from either
the noisy speech, signal-enhanced speech, or feature-enhanced
method. Table VIII shows the performance. Compared with us-
ing noisy speech and signal-based enhancement, feature-based
enhancement leads to the highest average performance using
single features for all the emotional attributes. We conclude that
feature-based enhancement can lead to higher improvements for
the top features than signal-based enhancement and that not all
the features must be enhanced.

In addition, feature-based enhancement frequently shows
clear improvements in the weak features identified in the analysis
of Section IV-C, which is not the case for the signal-enhancement
approach. Table IX reports the average performance obtained
only with weak features. For this analysis, we adopt the weak fea-
tures selected under the 10 dB SNR condition. When using weak
features, the feature enhancement leads to better performance
than models tested using either noisy speech or signal-based
enhancement for arousal and dominance. This result shows the
benefits of combining the feature enhancement approach and
our proposed robust feature selection method.

VII. CONCLUSION

Instead of enhancing all the features, this study proposed
to enhance only the features that disrupt the SER prediction
due to noise and to keep the features that are resilient. To
select those features, we train multiple single-feature probe
models, ranking the LLDs based on the performance (i.e.,
features that lead to good performance) and robustness (i.e.,
features that lead to a similar performance in noisy and clean
conditions) criteria. We trained an emotion recognition model
with features extracted from clean speech. Our selective feature
enhancement approach can improve the prediction of emotional
attribute scores under matched and mismatched environmental
conditions. This observation remains consistent, even when
the environmental conditions utilized for training the feature
enhancement model and selecting weak and robust features do
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not align with the target environment for testing the models. Our
analysis revealed that employing feature-based enhancement
results in superior performance compared to using signal-based
enhancement. We analyze the performance of SER systems
trained with clean speech using a single LLD. We evaluated
these single-feature models with LLDs extracted from noisy
speech, signal-enhanced speech, and feature-based enhance-
ment models. Signal-based enhancement does not clearly im-
prove the performances using individual LLDs. In contrast, the
feature-based enhancement approach leads to clear improve-
ments for the top-performing features, which compensate for
other features when all the LLDs are combined. Our analysis also
showed that some features lead to lower SER performance after
they are enhanced by the feature-based enhancement model,
implying the importance that not all the features need to be
enhanced.

A limitation of our feature selection method is that it requires
training multiple feature probe models for each target environ-
ment, which consumes computational resources as we adapt the
SER model to multiple environments. We plan to investigate how
to optimize our feature selection procedure to simultaneously
deal with multiple noisy environments. Moreover, we also plan
to study if our feature enhancement method is applicable to SER
models built using self-supervised speech representations, such
as Wav2Vec2.0 [55] or HuBERT [56], which have led to good
performance in recent SER studies [57], [58], [59].
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